New to the series? Start from the beginning!
Test quality metrics make sure that testing efforts are worthwhile. Though “testing” and “quality” may be synonymous as organizational titles, testing is only one method of enforcing quality. In software, it just happens to be the most effective one. Testing is expensive, though, because it slows down time-to-market. Some people even devalue testing work because it doesn’t add new features to a product. Below are aspects of test quality to consider measuring to prove and even increase the value of testing efforts.
Coverage
Quality Aspect | How much functionality is covered by tests? |
Desired State | High – More coverage means less risk. Note that 100% complete coverage is impossible. |
Metrics | Coverage may be measured for both manual and automated tests. However, automated test coverage is usually more important because automated tests are meant to be defensive without gaps.
Code Coverage – Code coverage tools check what paths of code are actually exercised by automated tests. While they cannot tell if tests are good or bad, they are great for exposing gaps in coverage. Unit test code coverage is easy because most frameworks have plugins, but above-unit code coverage requires instrumented builds. Look for tools that track more than just lines of code. Target 90%+ coverage. Add new tests to cover any major gaps. Feature Coverage – Feature coverage is a manual way to score features on test coverage based on planning and review. For this metric to be successful, a team must consistently specify features well; otherwise, this metric will give useless data. Gherkin scenarios a great way to do this – for example, each scenario can be marked as untested, manual, or automated. Feature coverage is unscientific, but it can give a better picture of functionalities actually covered (instead of just the raw lines of code covered). Automation Debt – Technical debt increases when tests are not automated and thus lack coverage. Teams are often unable to automate all tests originally planned, and test automation is frequently jettisoned from the Definition of Done. Or, a project may not start automating tests until a large chunk of the project is already complete. The best way to track automation debt is to create a backlog for incomplete automation work. Backlog tasks can be sized, prioritized, and planned according to whatever development process is used (Scrum, Kanban, etc.). Appropriate process metrics can then be used to understand the magnitude of the work and, thus, the lack of automated test coverage. Warning: Test case count, test length, and test code line count are terrible metrics for coverage because they encourage largeness rather than uniqueness. The goal of testing is to have the greatest coverage with the lowest risk for the least work. Anybody can blindly write tests or variations that add no meaningful value. |
Reliability
Quality Aspect | Do automated tests consistently reach completion? And how trustworthy are the results? |
Desired State | High – Reliability means less time for failure triage or (horrors) reruns. |
Metrics | Failure Reasons – Track the failure reason for each test case run. Ideally, tests should fail only when they discover product bugs. However, tests may also fail when:
Remember, “successful” test runs either pass with appropriate coverage or fail due to product bugs. “Unsuccessful” test runs fail or crash for reasons other than product bugs. Aim to minimize unsuccessful test runs. Never hack a test just to get it passing – always work to fix the problems behind test failures. |
Speed
Quality Aspect | How much time do test runs take? |
Desired State | Fast – Tests should complete in the shortest time possible. |
Metrics | Test Case Execution Time – Test case execution times indicate the efficiency of the automation code. Track the start-to-end execution time for every individual test case run. Then, analyze the data using common sense. For example, outliers may be inefficient tests that need tuning or should be removed altogether. It may be wise to separate test runs by result type or coverage area. Historical data can also be used as a baseline to determine performance impacts when making cross-cutting automation changes.
Test Suite Execution Time – Test suites are sets of test cases, but their execution times are not merely the sum of their tests’ times. A test suite run may include environmental setup, deployment, parallel execution, reporting, and other things. The purpose of tracking test suite execution time is to determine the start-to-end time of the suite in total, because that indicates the speed of feedback and, in CI, delivery. Tracking test suite execution time will also reveal the effect of adding more test cases to the suite, which then factors into the risk-based decisions of including or excluding tests. Test Pyramid Balance – The Test Pyramid separates tests between unit (bottom), integration (middle), and end-to-end (top) layers. Ideally, there should be more tests at the bottom than at the top. Why? Higher-level tests are more expensive – they take more time to develop, they are more time consuming to triage, and they have slower execution times. Consider the “Rule of 1’s”: a unit test takes ~1ms, an integration test takes ~1s, and an end-to-end test takes ~1m. When scaled to thousands of tests with continuous integration, end-to-end tests simply take too much time. Tracking the proportion of tests at each layer will give a rough picture of the balance. There’s no perfect ratio between layers, but make sure that the tests form a pyramid and not a cupcake, hourglass, or ice cream cone. Rebalance test efforts as appropriate. |
Return on Investment
Quality Aspect | Do the tests add greater value than their cost? |
Desired State | High – Tests need to be worth the effort. Don’t test for the sake of testing! |
Metrics | Measuring return on investment in terms of hard dollars is objectively impossible. The true cost of bugs can never be fully known: if a bug is caught early, the potential cost to fix it later can merely be estimated. The intangible value of protecting brand reputation may be more important than the tangible value of money saved by finding specific bugs. Better quality practices might prevent developers from causing bugs that would have otherwise happened – and there’s no good way to measure that.
Instead, return on investment is better measured by a collection of metrics that validate both code line protection and defect discovery. Use a weighted scorecard to get a more holistic view of ROI. Scorecards can be used with estimates for planning tests, as well as plugged in with actual values to measure the degree of success. Note that some aspects of ROI may be too difficult to measure accurately – in those cases, a LOW-MID-HIGH grading scale may be best. Others may seem like micromanagement.
|
Thanks for sharing thiss
LikeLike