Python

Python Testing 101: behave

Warning: If you are new to BDD, then I strongly recommend reading the BDD 101 series before trying to use the behave framework.

Overview

behave is a behavior-driven (BDD) test framework that is very similar to Cucumber, Cucumber-JVM, and SpecFlow. BDD frameworks are unique in that test cases are not written in raw programming code but rather in plain specification language that is then “glued” to code. The “behavior specs” help to define what the behavior is, and steps can be reused by multiple test cases (or “scenarios”). This is very different from more traditional frameworks like unittest and pytest. Although behave is not an official Cucumber variant, it still uses the Gherkin language (“Given-When-Then”) for behavior specification.

Test scenarios are written in Gherkin “.feature” files. Each Given, When, and Then step is “glued” to a step definition – a Python function decorated by a matching string in a step definition module. The behave framework essentially runs feature files like test scripts. Hooks (in “environment.py”) and fixtures can also insert helper logic for test execution.

behave is officially supported for Python 2, but it seems to run just fine using Python 3.

Installation

Use pip to install the behave module.

pip install behave

Project Structure

Since behave is an opinionated framework, it has a very opinionated project structure. All code must be located under a directory named “features”. Gherkin feature files and the “environment.py” file for hooks must appear under “features”, and step definition modules must appear under “features/steps”. Configuration files can store common execution settings and even override the path to the “features” directory.

Note: Step definition module names do not need to be the same as feature file names. Any step definition can be used by any feature file within the same project.

[project root directory]
|‐‐ [product code packages]
|-- features
|   |-- environment.py
|   |-- *.feature
|   `-- steps
|       `-- *_steps.py
`-- [behave.ini|.behaverc|tox.ini|setup.cfg]

Example Code

An example project named behavior-driven-python located in GitHub shows how to write tests using behave. This section will explain how the Web tests are designed.

The top layer in a behave project is the set of Gherkin feature files. Notice how the scenario below is concise, focused, meaningful, and declarative:

@web @duckduckgo
Feature: DuckDuckGo Web Browsing
  As a web surfer,
  I want to find information online,
  So I can learn new things and get tasks done.

  # The "@" annotations are tags
  # One feature can have multiple scenarios
  # The lines immediately after the feature title are just comments

  Scenario: Basic DuckDuckGo Search
    Given the DuckDuckGo home page is displayed
    When the user searches for "panda"
    Then results are shown for "panda"

Each scenario step is “glued” to a decorated Python function called a step definition. Step defs can use different types of step matchers and can also take parametrized inputs:

from behave import *
from selenium.webdriver.common.keys import Keys

DUCKDUCKGO_HOME = 'https://duckduckgo.com/'

@given('the DuckDuckGo home page is displayed')
def step_impl(context):
  context.browser.get(DUCKDUCKGO_HOME)

@when('the user searches for "{phrase}"')
def step_impl(context, phrase):
  search_input = context.browser.find_element_by_name('q')
  search_input.send_keys(phrase + Keys.RETURN)

@then('results are shown for "{phrase}"')
def step_impl(context, phrase):
  links_div = context.browser.find_element_by_id('links')
  assert len(links_div.find_elements_by_xpath('//div')) > 0
  search_input = context.browser.find_element_by_name('q')
  assert search_input.get_attribute('value') == phrase

The “environment.py” file can specify hooks to execute additional logic before and after steps, scenarios, features, and even the whole test suite. Hooks should handle automation concerns that should not be exposed through Gherkin. For example, Selenium WebDriver setup and cleanup should be handled by hooks instead of step definitions because after hooks always get run despite failures, while steps after an abortive failure will not get run.

from selenium import webdriver

def before_scenario(context, scenario):
  if 'web' in context.tags:
    context.browser = webdriver.Firefox()
    context.browser.implicitly_wait(10)

def after_scenario(context, scenario):
  if 'web' in context.tags:
    context.browser.quit()

Test Launch

behave boasts a powerful command line with many options. Below are common use case examples when running tests from the project root directory:

# Run all scenarios in the project
behave

# Run all scenarios in a specific feature file
behave features/web.feature

# Filter tests by tag
behave --tags-help
behave --tags @duckduckgo
behave --tags ~@unit
behave --tags @basket --tags @add,@remove

# Write a JUnit report (useful for Jenkins and other CI tools)
behave --junit

# Don't print skipped scenarios
behave -k

Pros and Cons

Like all BDD test frameworks, behave is opinionated. It works best for black box testing due to its behavior focus. Web testing would be a great use case because user interactions can easily be described using plain language. Reusable steps also foster a snowball effect for automation development. However, behave would not be good for unit testing or low-level integration testing – the verbosity would become more of a hindrance than a helper.

My recommendation is to use behave for black box testing if the team has bought into BDD. I would also strongly consider pytest-bdd as an alternative BDD framework because it leverages all the goodness of pytest.

Django Admin Translations

Django is a fantastic Python Web framework, and one of its great out-of-the-box features is internationalization (or “i18n” for short). It’s pretty easy to add translations to nearly any string in a Django app, but what about translating admin site pages? Titles, names, and actions all need translations. Those admin pages are automatically generated, so how can their words be translated? This guide shows you how to do it easily.

chinese_django_home

Want an internationalized admin site like this? Follow this guide to find out how!

i18n Review

If you are new to translations in Django, definitely read the official Translation page first. In a nutshell, all strings that need translation should be passed into a translation function for Python code or a translation block for Django template code. Django management commands then generate language-specific message files, in which translators provide translations for the marked strings, and finally compile them for app use. Note that translations require the gettext tools to be installed on your machine. Django also provides some advanced logic for handling special cases like date formats and pluralization, too. It’s really that simple!

Initial Setup

A Django project needs some basic config before doing translations, which is needed for both the main site and the admin.

Enabling Internationalization

Make sure the following settings are given in settings.py:

# settings.py

LANGUAGE_CODE = 'en-us'  # or other appropriate code
USE_I18N = True
USE_L10N = True

They were probably added by default. The Booleans could be set to False to give apps with no internationalization a small performance boost, but we need them to be True so that translations happen.

Changing Locale Paths

By default, message files will be generated into locale directories for each app with strings marked for translation. You may optionally want to set LOCALE_PATHS to change the paths. For example, it may be easiest to put all message files into one directory like this, rather than splitting them out by app:

# settings.py

LOCALE_PATHS = [os.path.join(BASE_DIR, 'locale')]

This will avoid translation duplication between apps. It’s a good strategy for small projects, but be warned that it won’t scale well for larger projects.

Middleware for Automatic Translation

Django provides LocaleMiddleware to automatically translate pages using “context clues” like URL language prefixes, session values, and cookies. (The full pecking order is documented under How Django discovers language preference on the official doc page.) So, if a user accesses the site from China, then they should automatically receive Chinese translations! To use the middleware, add django.middleware.locale.LocaleMiddleware to the MIDDLEWARE setting in settings.py. Make sure it comes after SessionMiddleware and CacheMiddleware and before CommonMiddleware, if those other middlewares are used.

# settings.py

MIDDLEWARE = [
    # ...
    'django.middleware.locale.LocaleMiddleware',
    # ...
]

URL Pattern Language Prefixes

Getting automatic translations from context clues is great, but it’s nevertheless useful to have direct URLs to different page translations. The i18n_patterns function can easily add the language code as a prefix to URL patterns. It can be applied to all URLs for the site or only a subset of URLs (such as the admin site). Optionally, patterns can be set so that URLs without a language prefix will use the default language. The main caveat for using i18n_patterns is that it must be used from the root URLconf and not from included ones. The project’s root urls.py file should look like this:

# urls.py

from django.conf.urls.i18n import i18n_patterns
from django.contrib import admin
from django.urls import path

urlpatterns = i18n_patterns(
    # ...
    path('admin/', admin.site.urls),
    # ...

    # If no prefix is given, use the default language
    prefix_default_language=False
)

Limiting Language Choices

When adding language prefixes to URLs, I strongly recommend limiting the available languages. Django includes ready-made message files for several languages. A site would look bad if, for example, the “/fr/” prefix were available without any French translations. Set the available languages using LANGUAGES in settings.py:

# settings.py

from django.utils.translation import gettext_lazy as _

LANGUAGES = [
    ('en', _('English')),
    ('zh-hans', _('Simplified Chinese')),
]

Note that language codes follow the ISO 639-1 standard.

Doing the Translations

With the configurations above, translations can now be added for the main site! The steps below show how to add translations specifically for the admin. Unless there is a specific need, use lazy translation for all cases.

Out-of-the-Box Phrases

Admin site pages are automatically generated using out-of-the-box templates with lots of canned phrases for things like “login,” “save,” and “delete.” How do those get translated? Thankfully, Django already has translations for many major languages. Check out the list under django/contrib/admin/locale for available languages. Django will automatically use translations for these languages in the admin site – there’s nothing else you need to do! If you need a language that’s not available, I strongly encourage you to contribute new translations to the Django project so that everyone can share them. (I suspect that you could also try to manually create messages files in your locale directory, but I have not tested that myself.)

Custom Admin Titles

There are a few ways to set custom admin site titles. My preferred method is to set them in the root urls.py file. Wherever they are set, mark them for lazy translation. It’s easy to overlook them!

from django.contrib import admin
from django.utils.translation import gettext_lazy as _

admin.site.index_title = _('My Index Title')
admin.site.site_header = _('My Site Administration')
admin.site.site_title = _('My Site Management')

App Names

App names are another set of phrases that can be easily missed. Add a verbose_name field with a translatable string to every AppConfig class in the project. Do not simply try to translate the string given for the name field: Django will yield a runtime exception!

from django.apps import AppConfig
from django.utils.translation import gettext_lazy as _

class CustomersConfig(AppConfig):
    name = 'customers'
    verbose_name = _('Customers')

Model Names

Models are full of strings that need translations. Here are the things to look for:

  • Give each field a verbose_name value, since the identifiers cannot be translated.
  • Mark help texts, choice descriptions, and validator messages as translatable.
  • Add a Meta class with verbose_name and verbose_name_plural values.
  • Look out for any other strings that might need translations.

Here is an example model:

from django.db import models
from django.core.validators import RegexValidator
from django.utils.translation import gettext_lazy as _

class Customer(models.Model):
    name = models.CharField(
        max_length=100,
        help_text=_('First and last name.'),
        verbose_name=_('name'))
    address = models.CharField(
        max_length=100,
        verbose_name=_('address'))
    phone = models.CharField(
        max_length=10,
        validators=[RegexValidator(
            '^\d{10}$',
            _('Phone must be exactly 10 digits.'))],
        verbose_name=_('phone number'))

    class Meta:
        verbose_name = _('customer')
        verbose_name_plural = _('customers')

Run the Commands

Once all strings are marked for translation, generate the message files:

# Generate message files for a desired language
python manage.py makemessages -l zh_Hans

# After adding translations to the .po files, compile the messages
python manage.py compilemessages

Warning: The language code and the locale name may be different! For example, take Simplified Chinese: the language code is “zh-hans”, but the locale name is “zh_Hans”. Notice the underscore and the caps. Locale names often include a country code to differentiate language nuances, like American English vs. British English. Refer to django/contrib/admin/local for a list of examples.

Bonus: Admin Language Buttons

With LocaleMiddleware and i18n_patterns, pages should be automatically translated based on context or URL prefix. However, it would still be great to let the user manually switch the language from the admin interface. Clicking a button is more intuitive than fumbling with URL prefixes.

There are many ways to add language switchers to the admin site. To me, the most sensible way is to add flag icons to the title bar. Behind the scenes, each flag icon would be linked to a language-prefixed URL for the page. That way, whenever a user clicks the flag, then the same page is loaded in the desired language.

i18n_userlinks

It’s pretty easy to make something like this, but it needs a few steps.

Language Code Prefix Switcher

Since URL paths use i18n_patterns, their language codes can be trusted to be uniform. A utility function can easily add or substitute the desired language code as a URL path prefix. For example, it would convert “/admin/” and “/en/admin/” into “/zh-hans/admin/” for Simplified Chinese. This function should also validate that the path and language are correct. It can be put anywhere in the project. Below is the code:

from django.conf import settings

def switch_lang_code(path, language):

    # Get the supported language codes
    lang_codes = [c for (c, name) in settings.LANGUAGES]

    # Validate the inputs
    if path == '':
        raise Exception('URL path for language switch is empty')
    elif path[0] != '/':
        raise Exception('URL path for language switch does not start with "/"')
    elif language not in lang_codes:
        raise Exception('%s is not a supported language code' % language)

    # Split the parts of the path
    parts = path.split('/')

    # Add or substitute the new language prefix
    if parts[1] in lang_codes:
        parts[1] = language
    else:
        parts[0] = "/" + language

    # Return the full new path
    return '/'.join(parts)

Prefix Switch Template Filter

Ultimately, this function must be called by Django templates in order to provide links to language-specific pages. Thus, we need a custom template filter. The filter implementation module can be put into any app, but it must be in a sub-package named templatetags – that’s how Django knows to look for custom template tags and filters. The new filters will be easy to write because we already have the switch_lang_code function. (Separating the logic to handle the prefix from the filter itself makes both more testable and reusable.) The code is below:

# [app]/templatetags/i18n_switcher.py

from django import template
from django.template.defaultfilters import stringfilter

register = template.Library()

@register.filter
@stringfilter
def switch_i18n_prefix(path, language):
    """takes in a string path"""
    return switch_lang_code(path, language)

@register.filter
def switch_i18n(request, language):
    """takes in a request object and gets the path from it"""
    return switch_lang_code(request.get_full_path(), language)

Admin Template Override

Finally, admin templates must be overridden so that we can add new elements to the admin pages. Any admin template can be overridden by creating new templates of the same name under [project-root]/templates/admin. Parent content will be used unless explicitly overridden within the child template file. Since we want to change the title bar, create a new template file for base_site.html with the following contents:

The static CSS file named css/custom_admin.css should have the following contents:

Notice that the whole userlinks block had to be rewritten to fit the flag into place. The static image files for the flags are simply free flag emojis. They are hyperlinked to the appropriate language URL for the page: the switch_i18n filter is applied to the active request object to get the desired language-prefixed path. (Note: In my example code, I removed the “View Site” link because my site didn’t need it.)

Completed View

The admin site should now look like this:

This slideshow requires JavaScript.

The files in my project needed for the admin language buttons are organized like this (without showing other files in the project):

[root]
|- i18n_switcher
|  |- templatetags
|  |  |- __init__.py
|  |  `- i18n_switcher.py
|  |- __init__.py
|  `- apps.py
|- locale
|  `- zh_Hans
|     `- LC_MESSAGES
|        |- django.mo
|        `- django.po
|- static
|  |- css
|  |  `- custom_admin.css
|  `- images
|     |- flag-china-16.png
|     `- flag-usa-16.png
`- templates
   `- admin
      `- base_site.html

As mentioned before, flag icons in the title bar are simply one way to provide easy links to translated pages. It works well when there are only a few language choices available. A different view would be better for more languages, like a dropdown, a second line in the title bar, or even a page footer.

With a bit more polishing, this would also make a nifty little Django app package that others could use for their projects. Maybe I’ll get to that someday.

Pipenv: Python Packagement for Champions!

While recently deploying a new Python Django app to Heroku, I noticed the documentation mentioned a tool I hadn’t known before: pipenv. I thought to myself, “Great, now I need to learn a new tool. What was so bad about pip and virtualenv?” So, I did my research, and BOOM! Yes. Mind blown. Life changed. This.

What It Is

Pipenv is the Python packaging and environments tool for champions.

  • It unites pip, Pipfile, and virtualenv into a sophisticated workflow with simple commands.
  • It automatically creates virtual environments for projects.
  • It automatically updates package dependencies (and their dependencies).
  • It locks versions for deterministic builds.

I strongly recommend using pipenv for all new Python projects. Python.org officially recommends it, too.

What It’s About

Packages and environments (“packagement”) are essential to Python development. Typically, Pythoneers create a virtual environment for each project and install dependent packages into it locally using pip. They then “freeze” the dependencies into a requirements.txt file so that others can easily recreate the environment. Virtual environments thus enable different projects to use different package versions without global conflict.

Unfortunately, this traditional workflow has some problems:

  • It uses multiple tools instead of one and requires many commands.
  • Different projects can do the workflow differently, which can be confusing.
  • The requirements.txt file must be manually generated and can easily fall out of date.
  • Dev-only dependencies are a hassle to separate.
  • Uninstalling packages will not remove sub-packages.
  • Dependencies with version ranges instead of fixed versions cause nondeterministic builds.

Pipenv solves these problems by combining pipPipfile, and virtualenv into a standard workflow that automatically handles and locks package updates.

How to Use It

See how simple it is to use pipenv with a Python project:

# Install pipenv
pip install pipenv

# Create a new project directory
mkdir panda_project
cd panda_project
echo "print('hello')" > main.py

# Init pipenv:
# Creates a virtual environment
# Then creates Pipfile and Pipfile.lock files
pipenv install

# Install a package:
# Updates the Pipfiles
pipenv install requests

# Install a dev-only package:
# Updates the Pipfiles
pipenv install --dev pytest

# Run commands in the environment
pipenv run python --version
pipenv run python main.py

More Info

There’s no need for me to repeat what other people have already said:

 

 

giphy

Me, after using pipenv for the first time.

Django Projects in Visual Studio Code

Visual Studio Code is a free source code editor developed my Microsoft. It feels much more lightweight than traditional IDEs, yet its extensions make it versatile enough to handle just about any type of development work, including Python and the Django web framework. This guide shows how to use Visual Studio Code for Django projects.

Installation

Make sure the latest version of Visual Studio Code is installed. Then, install the following (free) extensions:

Reload Visual Studio Code after installation.

This slideshow requires JavaScript.

Editing Code

The VS Code Python editor is really first-class. The syntax highlighting is on point, and the shortcuts are mostly what you’d expect from an IDE. Django template files also show syntax highlighting. The Explorer, which shows the project directory structure on the left, may be toggled on and off using the top-left file icon. Check out Python with Visual Studio Code for more features.

This slideshow requires JavaScript.

Virtual Environments

Virtual environments with venv or virtualenv make it easy to manage Python versions and packages locally rather than globally (system-wide). A common best practice is to create a virtual environment for each Python project and install only the packages the project needs via pip. Different environments make it possible to develop projects with different version requirements on the same machine.

Visual Studio Code allows users to configure Python environments. Navigate to File > Preferences > Settings and set the python.pythonPath setting to the path of the desired Python executable. Set it as a Workspace Setting instead of a User Setting if the virtual environment will be specific to the project.

VS Code Python Venv

Python virtual environment setup is shown as a Workspace Setting. The terminal window shows the creation and activation of the virtual environment, too.

Helpful Settings

Visual Studio Code settings can be configured to automatically lint and format code, which is especially helpful for Python. As shown on Ruddra’s Blog, install the following packages:

$ pip install pep8
$ pip install autopep8
$ pip install pylint

And then add the following settings:

{
    "team.showWelcomeMessage": false,
    "editor.formatOnSave": true,
    "python.linting.pep8Enabled": true,
    "python.linting.pylintPath": "/path/to/pylint",
    "python.linting.pylintArgs": [
        "--load-plugins",
        "pylint_django"
    ],
    "python.linting.pylintEnabled": true
}

Editor settings may also be language-specific. For example, to limit automatic formatting to Python files only:

{
    "[python]": {
        "editor.formatOnSave": true
    }
}

Make sure to set the pylintPath setting to the real path value. Keep in mind that these settings are optional.

VS Code Django Settings.png

Full settings for automatically formatting and linting the Python code.

Running Django Commands

Django development relies heavily on its command-line utility. Django commands can be run from a system terminal, but Visual Studio Code provides an Integrated Terminal within the app. The Integrated Terminal is convenient because it opens right to the project’s root directory. Plus, it’s in the same window as the code. The terminal can be opened from ViewIntegrated Terminal or using the “Ctrl-`” shortcut.

VS Code Terminal.png

Running Django commands from within the editor is delightfully convenient.

Debugging

Debugging is another way Visual Studio Code’s Django support shines. The extensions already provide the launch configuration for debugging Django apps! As a bonus, it should already be set to use the Python path given by the python.pythonPath setting (for virtual environments). Simply switch to the Debug view and run the Django configuration. The config can be edited if necessary. Then, set breakpoints at the desired lines of code. The debugger will stop at any breakpoints as the Django app runs while the user interacts with the site.

VS Code Django Debugging

The Django extensions provide a default debug launch config. Simply set breakpoints and then run the “Django” config to debug!

Version Control

Version control in Visual Studio Code is simple and seamless. Git has become the dominant tool in the industry, but VS Code supports other tools as well. The Source Control view shows all changes and provides options for all actions (like commits, pushes, and pulls). Clicking changed files also opens a diff. For Git, there’s no need to use the command line!

VS Code Git

The Source Control view with a diff for a changed file.

Visual Studio Code creates a hidden “.vscode” directory in the project root directory for settings and launch configurations. Typically, these settings are specific to a user’s preferences and should be kept to the local workspace only. Remember to exclude them from the Git repository by adding the “.vscode” directory to the .gitignore file.

VS Code gitignore

.gitignore setting for the .vscode directory

Editor Comparisons

JetBrains PyCharm is one of the most popular Python IDEs available today. Its Python and Django development features are top-notch: full code completion, template linking and debugging, a manage.py console, and more. PyCharm also includes support for other Python web frameworks, JavaScript frameworks, and database connections. Django features, however, are available only in the (paid) licensed Professional Edition. It is possible to develop Django apps in the free Community Edition, as detailed in Django Projects in PyCharm Community Edition, but the missing features are a significant limitation. Plus, being a full IDE, PyCharm can feel heavy with its load time and myriad of options.

PyCharm is one of the best overall Python IDEs/editors, but there are other good ones out there. PyDev is an Eclipse-based IDE that provides Django support for free. Sublime Text and Atom also have plugins for Django. Visual Studio Code is nevertheless a viable option. It feels fast and simple yet powerful. Here’s my recommended decision table:

What’s Going On What You Should Do
Do you already have a PyCharm license? Just use PyCharm Professional Edition.
Will you work on a large-scale Django project? Strongly consider buying the license.
Do you need something fast, simple, and with basic Django support for free? Use Visual Studio Code, Atom, or Sublime Text.
Do you really want to stick to a full IDE for free? Pick PyDev if you like Eclipse, or follow the guide for Django Projects in PyCharm Community Edition

Starting a Django Project in an Existing Directory

Django is a wonderful Python web framework, and its command line utility is indispensable when developing Django sites. However, the command to start new projects is a bit tricky. The official tutorial shows the basic case – how to start a new project from scratch using the command:

$ django-admin startproject [projectname]

This command will create a new directory using the given project name and generate the basic Django files within it. However, project names have strict rules: they may contain only letters, numbers, and underscores. So, the following project name would fail:

$ django-admin startproject my-new-django-project
CommandError: 'my-new-django-project' is not a valid project name.
Please make sure the name is a valid identifier.

Another problem is initializing a new Django project inside an existing directory:

$ mkdir myproject
$ django-admin startproject myproject
CommandError: '/path/to/myproject' already exists

These two problems commonly happen when using Git (or other source control systems). The repository may already exist, and its name may have illegal project name characters. The project could be created as a sub-directory within the repository root, but this is not ideal.

Thankfully, there’s a simple solution. The “django-admin startproject” command takes an optional argument after the project name for the project path. This argument sidesteps both problems. The project root directory and the Django project file directory can have different names. The example below shows how to change into the desired root directory and start the project from within it using “.”:

$ cd my-django-git
$ django-admin startproject myproject .
$ ls
manage.py myproject

This can be a stumbling block because it is not documented in Django’s official tutorial. The “django-admin help startproject” command does document the optional directory argument but does not explain when this option is useful. Hopefully, this article makes its use case more intuitive!

Django Favicon Setup (including Admin)

Do you want to add a favicon to your Django site the right way? Want to add it to your admin site as well? Read this guide to find out how!

What is a Favicon?

A favicon (a.k.a a “favorite icon” or a “shortcut icon”) is a small image that appears with the title of a web page in a browser. Typically, it’s a logo. Favicons were first introduced by Internet Explorer 5 in 1999, and they have since been standardized by W3C. Traditionally, a site’s favicon is saved as 16×16 pixel “favicon.ico” file in the site’s root directory, but many contemporary browsers support other sizes, formats, and locations. There are a plethora of free favicon generators available online. Every serious website should have a favicon.

AP Favicon

The favicon for this blog is circled above in red.

Making the Favicon a Static File

Before embedding the favicon in web pages, it must be added to the Django project as a static file. Make sure the favicon is accessible however you choose to set up static files. The simplest approach would be to put the image file under a directory named static/images and use the standard static file settings. However, I strongly recommend reading the official docs on static files:

Embedding the Favicon into HTML

Adding the favicon to a Django web page is really no different than adding it to any other type of web page. Simply add the link for the favicon file to the HTML template file’s header using the static URL. It should look something like this:

Better Reuse with a Parent Template

Most sites use only one favicon for all pages. Rather than adding the same favicon explicitly to every page, it would be better to write a parent template that adds it automatically for all pages. A basic parent template could look like this:

And a child of it could look like this:

As good practice, other common things like CSS links could also be added to the parent template. Customize parent templates to your project’s needs.

Admin Site Favicon

While the admin site is not the main site most people will see, it is still nice to give it a favicon. The best way to set the favicon is to override admin templates, as explained in this StackOverflow post. This approach is like an extension of the previous one: a new template will be inserted between an existing parent-child inheritance to set the favicon. Create a new template at templates/admin/base_site.html with the contents below, and all admin site pages will have the favicon!

Make sure the template directory path is included in the TEMPLATES setting if it is outside of an app:

Django REST Framework Browsable API Favicon

The Django REST Framework is a great extension to Django for creating simple, standard, and seamless REST APIs for a site. It also provides a browsable API so that humans can easily see and use the endpoints. It’s fairly easy to change the browsable API’s favicon using a similar template override. Create a new template at templates/rest_framework/api.html with the following contents:

Favicon URL Redirect

A number of other articles (here, here, and here) suggest adding a URL redirect for the favicon file. Unfortunately, I got mixed results when I attempted this method myself: it worked on Mozilla Firefox and Microsoft Edge but not Google Chrome. (Yes, I tried clearing the cache and all that jazz.)

Django Favicon Apps

There are open-source Django apps for handling favicons more easily. I have not used them personally, but they are at least worth mentioning: