testing

Clicking Web Elements with Selenium WebDriver

Selenium WebDriver is the most popular open source package for Web UI test automation. It allows tests to interact directly with a web page in a live browser. However, using Selenium WebDriver can be very frustrating because basic interactions often lack robustness, causing intermittent errors for tests.

The Basics

One such vulnerable interaction is clicking elements on a page. Clicking is probably the most common interaction for tests. In C#, a basic click would look like this:

webDriver.FindElement(By.Id("my-id")).Click();

This is the easy and standard way to click elements using Selenium WebDriver. However, it will work only if the targeted element exists and is visible on the page. Otherwise, the WebDriver will throw exceptions. This is when programmers pull their hair out.

Waiting for Existence

To avoid race conditions, interactions should not happen until the target element exists on the page. Even split-second loading times can break automation. The best practice is to use explicit waits before interactions with a reasonable timeout value, like this:

const int timeoutSeconds = 15;
var ts = new TimeSpan(0, 0, timeoutSeconds);
var wait = new WebDriverWait(webDriver, ts);

wait.Until((driver) => driver.FindElements(By.Id("my-id")).Count > 0);
webDriver.FindElement(By.Id("my-id")).Click();

Other Preconditions

Sometimes, Web elements won’t appear without first triggering something else. Even if the element exists on the page, the WebDriver cannot click it until it is made visible. Always look for the proper way to make that element available for clicking. Click on any parent panels or expanders first. Scroll if necessary. Make sure the state of the system should permit the element to be clickable.

If the element is scrolled out of view, move to the element before clicking it:

new Actions(webDriver)
    .MoveToElement(webDriver.FindElement(By.Id("my-id")))
    .Click()
    .Perform();

Last Ditch Efforts

Nevertheless, there are times when clickable elements just don’t cooperate. They just can’t seem to be made visible. When all else fails, drop directly into JavaScript:

((IJavaScriptExecutor)webDriver).ExecuteScript(
    "arguments[0].click();",
    webDriver.FindElement(By.Id("my-id")));

Do this only when absolutely necessary. It is a best practice to use Selenium WebDriver methods because they make automated interaction behave more like a real user than raw JavaScript calls. Make sure to give good reasons in code comments whenever doing this, too.

Final Advice

This article was written specifically for clicks, but its advice can be applied to other sorts of interactions, too. Just be smart about waits and preconditions.

Note: Code examples on this page are written in C#, but calls are similar for other languages supported by Selenium WebDriver.

5 Things I Love About SpecFlow

SpecFlow, a.k.a. “Cucumber for .NET,” is a leading BDD test automation framework for .NET. Created by Gáspár Nagy and maintained as a free, open source project on GitHub by TechTalk, SpecFlow presently has almost 3 million total NuGet downloads. I’ve used it myself at a few companies, and, I must say as an automationeer, it’s awesome! SpecFlow shares a lot in common with other Cucumber frameworks like Cucumber-JVM, but it is not a knockoff – it excels in many ways. Below are five features I love about SpecFlow.

#1: Declarative Specification by Example

SpecFlow is a behavior-driven test framework. Test cases are written as Given-When-Then scenarios in Gherkin “.feature” files. For example, imagine testing a cucumber basket:

Feature: Cucumber Basket
  As a gardener,
  I want to carry many cucumbers in a basket,
  So that I don’t drop them all.
  
  @cucumber-basket
  Scenario: Fill an empty basket with cucumbers
    Given the basket is empty
    When "10" cucumbers are added to the basket
    Then the basket is full

Notice a few things:

  • It is declarative in that steps indicate what should be done at a high level.
  • It is concise in that a full test case is only a few lines long.
  • It is meaningful in that the coverage and purpose of the test are intuitively obvious.
  • It is focused in that the scenario covers only one main behavior.

Gherkin makes it easy to specify behaviors by example. That way, everybody can understand what is happening. C# code will implement each step in lower layers. Even if your team doesn’t do the full-blown BDD process, using a BDD framework like SpecFlow is still great for test automation. Test code naturally abstracts into separate layers, and steps are reusable, too!

#2: Context is King

Safely sharing data (e.g., “context”) between steps is a big challenge in BDD test frameworks. Using static variables is a simple yet terrible solution – any class can access them, but they create collisions for parallel test runs. SpecFlow provides much better patterns for sharing context.

Context injection is SpecFlow’s simple yet powerful mechanism for inversion of control (using BoDi). Any POCOs can be injected into any step definition class, either using default values or using a specific initialization, by declaring the POCO as a step def constructor argument. Those instances will also be shared instances, meaning steps across different classes can share the same objects! For example, steps for Web tests will all need a reference to the scenario’s one WebDriver instance. The context-injected objects are also created fresh for each scenario to protect test case independence.

Another powerful context mechanism is ScenarioContext. Every scenario has a unique context: title, tags, feature, and errors. Arbitrary objects can also be stored in the context object like a Dictionary, which is a simple way to pass data between steps without constructor-level context injection. Step definition classes can access the current scenario context using the static ScenarioContext.Current variable, but a better, thread-safe pattern is to make all step def classes extend the Steps class and simply reference the ScenarioContext instance variable.

#3: Hooks for Any Occasion

Hooks are special methods that insert extra logic at critical points of execution. For example, WebDriver cleanup should happen after a Web test scenario completes, no matter the result. If the cleanup routine were put into a Then step, then it would not be executed if the scenario had a failure in a When step. Hooks are reminiscent of Aspect-Oriented Programming.

Most BDD frameworks have some sort of hooks, but SpecFlow stands out for its hook richness. Hooks can be applied before and after steps, scenario blocks, scenarios, features, and even around the whole test run. (Cucumber-JVM, by contrast, does not support global hooks.) Hooks can be selectively applied using tags, and they can be assigned an order if a project has multiple hooks of the same type. Hook methods will also be picked up from any step definition class. SpecFlow hooks are just awesome!

#4: Thorough Outline Templating

Scenario Outlines are a standard part of Gherkin syntax. They’re very useful for templating scenarios with multiple input combinations. Consider the cucumber basket again:

Feature: Cucumber Basket
  
  Scenario Outline: Add cucumbers to the basket
    Given the basket has "<initial>" cucumbers
    When "<some>" cucumbers are added to the basket
    Then the basket has "<total>" cucumbers

    Examples: Counts
      | initial | some | total |
      | 1       | 2    | 3     |
      | 5       | 3    | 8     |

All BDD frameworks can parametrize step inputs (shown in double quotes). However, SpecFlow can also parametrize the non-input parts of a step!

Feature: Cucumber Basket
  
  Scenario Outline: Use the cucumber basket
    Given the basket has "<initial>" cucumbers
    When "<some>" cucumbers are <handled-with> the basket
    Then the basket has "<total>" cucumbers

    Examples: Counts
      | initial | some | handled-with | total |
      | 1       | 2    | added to     | 3     |
      | 5       | 3    | removed from | 2     |

The step definitions for the add and remove steps are separate. The step text for the action is parametrized, even though it is not a step input:

[When(@"""(\d+)"" cucumbers are added to the basket")]
public void WhenCucumbersAreAddedToTheBasket(int count) { /* */ }

[When(@"""(\d+)"" cucumbers are removed from the basket")]
public void WhenCucumbersAreRemovedFromTheBasket(int count) { /* */ }

That’s cool!

#5: Test Thread Affinity

SpecFlow can use any unit test runner (like MsTest, NUnit, and xUnit.net), but TechTalk provides the official SpecFlow+ Runner for a licensed fee. I’m not associated with TechTalk in any way, but the SpecFlow+ Runner is worth the cost for enterprise-level projects. It has a friendly command line, a profile file to customize execution, parallel execution, and nice integrations.

The major differentiator, in my opinion, is its test thread affinity feature. When running tests in parallel, the major challenge is avoiding collisions. Test thread affinity is a simple yet powerful way to control which tests run on which threads. For example, consider testing a website with user accounts. No two tests should use the same user at the same time, for fear of collision. Scenarios can be tagged for different users, and each thread can have the affinity to run scenarios for a unique user. Some sort of parallel isolation management like test thread affinity is absolutely necessary for test automation at scale. Given that the SpecFlow+ Runner can handle up to 64 threads (according to TechTalk), massive scale-up is possible.

But Wait, There’s More!

SpecFlow is an all-around great test automation framework, whether or not your team is doing full BDD. Feel free to add comments below about other features you love (or *gasp* hate) about SpecFlow!

 

Quality Metrics 101: Test Quality

New to the series? Start from the beginning!

Test quality metrics make sure that testing efforts are worthwhile. Though “testing” and “quality” may be synonymous as organizational titles, testing is only one method of enforcing quality. In software, it just happens to be the most effective one. Testing is expensive, though, because it slows down time-to-market. Some people even devalue testing work because it doesn’t add new features to a product. Below are aspects of test quality to consider measuring to prove and even increase the value of testing efforts.

roofing

Coverage

Quality Aspect How much functionality is covered by tests?
Desired State High – More coverage means less risk. Note that 100% complete coverage is impossible.
Metrics Coverage may be measured for both manual and automated tests. However, automated test coverage is usually more important because automated tests are meant to be defensive without gaps.

Code Coverage – Code coverage tools check what paths of code are actually exercised by automated tests. While they cannot tell if tests are good or bad, they are great for exposing gaps in coverage. Unit test code coverage is easy because most frameworks have plugins, but above-unit code coverage requires instrumented builds. Look for tools that track more than just lines of code. Target 90%+ coverage. Add new tests to cover any major gaps.

Feature Coverage – Feature coverage is a manual way to score features on test coverage based on planning and review. For this metric to be successful, a team must consistently specify features well; otherwise, this metric will give useless data. Gherkin scenarios a great way to do this – for example, each scenario can be marked as untested, manual, or automated. Feature coverage is unscientific, but it can give a better picture of functionalities actually covered (instead of just the raw lines of code covered).

Automation DebtTechnical debt increases when tests are not automated and thus lack coverage. Teams are often unable to automate all tests originally planned, and test automation is frequently jettisoned from the Definition of Done. Or, a project may not start automating tests until a large chunk of the project is already complete. The best way to track automation debt is to create a backlog for incomplete automation work. Backlog tasks can be sized, prioritized, and planned according to whatever development process is used (Scrum, Kanban, etc.). Appropriate process metrics can then be used to understand the magnitude of the work and, thus, the lack of automated test coverage.

Warning: Test case count, test length, and test code line count are terrible metrics for coverage because they encourage largeness rather than uniqueness. The goal of testing is to have the greatest coverage with the lowest risk for the least work. Anybody can blindly write tests or variations that add no meaningful value.

gears-image1

Reliability

Quality Aspect Do automated tests consistently reach completion? And how trustworthy are the results?
Desired State High – Reliability means less time for failure triage or (horrors) reruns.
Metrics Failure Reasons – Track the failure reason for each test case run. Ideally, tests should fail only when they discover product bugs. However, tests may also fail when:

  • an acceptable product change caused an automation error because tests were not updated, indicating poor communication or careless updates
  • an environmental change or interruption caused an automation error, indicating deployment or sysadmin problems
  • the automation code itself has a bug

Remember, “successful” test runs either pass with appropriate coverage or fail due to product bugs. “Unsuccessful” test runs fail or crash for reasons other than product bugs. Aim to minimize unsuccessful test runs. Never hack a test just to get it passing – always work to fix the problems behind test failures.

is-the-speedometer-reliable-in-telling-me-my-vehicles-real-time-speed

Speed

Quality Aspect How much time do test runs take?
Desired State Fast – Tests should complete in the shortest time possible.
Metrics Test Case Execution Time – Test case execution times indicate the efficiency of the automation code. Track the start-to-end execution time for every individual test case run. Then, analyze the data using common sense. For example, outliers may be inefficient tests that need tuning or should be removed altogether. It may be wise to separate test runs by result type or coverage area. Historical data can also be used as a baseline to determine performance impacts when making cross-cutting automation changes.

Test Suite Execution Time – Test suites are sets of test cases, but their execution times are not merely the sum of their tests’ times. A test suite run may include environmental setup, deployment, parallel execution, reporting, and other things. The purpose of tracking test suite execution time is to determine the start-to-end time of the suite in total, because that indicates the speed of feedback and, in CI, delivery. Tracking test suite execution time will also reveal the effect of adding more test cases to the suite, which then factors into the risk-based decisions of including or excluding tests.

Test Pyramid Balance – The Test Pyramid separates tests between unit (bottom), integration (middle), and end-to-end (top) layers. Ideally, there should be more tests at the bottom than at the top. Why? Higher-level tests are more expensive – they take more time to develop, they are more time consuming to triage, and they have slower execution times. Consider the “Rule of 1’s”: a unit test takes ~1ms, an integration test takes ~1s, and an end-to-end test takes ~1m. When scaled to thousands of tests with continuous integration, end-to-end tests simply take too much time. Tracking the proportion of tests at each layer will give a rough picture of the balance. There’s no perfect ratio between layers, but make sure that the tests form a pyramid and not a cupcake, hourglass, or ice cream cone. Rebalance test efforts as appropriate.

piggybankmoney

Return on Investment

Quality Aspect Do the tests add greater value than their cost?
Desired State High – Tests need to be worth the effort. Don’t test for the sake of testing!
Metrics Measuring return on investment in terms of hard dollars is objectively impossible. The true cost of bugs can never be fully known: if a bug is caught early, the potential cost to fix it later can merely be estimated. The intangible value of protecting brand reputation may be more important than the tangible value of money saved by finding specific bugs. Better quality practices might prevent developers from causing bugs that would have otherwise happened – and there’s no good way to measure that.

Instead, return on investment is better measured by a collection of metrics that validate both code line protection and defect discovery. Use a weighted scorecard to get a more holistic view of ROI. Scorecards can be used with estimates for planning tests, as well as plugged in with actual values to measure the degree of success. Note that some aspects of ROI may be too difficult to measure accurately – in those cases, a LOW-MID-HIGH grading scale may be best. Others may seem like micromanagement.

  • Priority – Assign each test a priority for its coverage importance. Core functionalities should have the highest priority, while fringe functionalities should have the lowest priority. Focus on high-priority tests. Another way to look at importance is risk, or the chances that bugs will escape if explicit testing for a feature is not done.
  • Test Execution Frequency – Track how many times tests are actually run. Higher frequency is better. Tests that are rarely run should either be included in more regular runs or removed/archived. This could easily be tracked by a test management tool or database.
  • Coverage Uniqueness – Duplicate test coverage wastes resources. Unfortunately, this one is difficult to measure. Tools for code coverage or static analysis might help. Manual review, however, is typically a better approach.
  • Development Cost and Maintenance Cost – Track how much effort it takes to make and keep tests, including man-hours and resources. Lower costs are better, of course. Planning tools may help with this.
  • Bug Discovery – Track bugs discovered in terms of severity and when and how they were caught. Ideally, the number of bugs caught by customers after a release (meaning, not caught by tests during development) should be minimal, and their severity should be low. Bug tracking tools should easily provide this data. Be warned, though, that the raw bug count is a poor metric. Consider this question: Is a high bug count good or bad? Trick question – during a release, it indicates good test quality but poor product quality; after a release, it indicates all-around poor quality. What matters is that a minimal number of bugs happen at all, and that most of those bugs are caught and fixed before a release. Plus, keep in mind that bugs happen by accident. Finally, focusing exclusively on bug count to determine test value ignores the positive side of testing – that passing tests give confidence that features work correctly.

Quality Metrics 101: The Good, The Bad, and The Ugly

metric – [me-trik] – (noun) a standard for measuring or evaluating something

(Courtesy of dictionary.com)

When developing software, metrics can be a good way to track progress and evaluate quality. Managers typically love them because they provide insights that could otherwise be hard to see. Come on, who doesn’t love pretty charts with rainbow colors? However, gathering metrics is not easy, especially for quality. Some metrics are downright useless, and others encourage bad behavior when used improperly. It is far more important to focus on the most important aspects of quality than to blindly promulgate numbers. This article will cover quality metrics in depth, giving guidance on what quality aspects matter most and how they can be measured.

What are Quality Metrics?

Quality is the degree of a feature’s excellence. Quality metrics attempt to impartially measure a feature’s excellence. The word “attempt” is notable – quality is inherently relative, and metrics can sometimes be subjective. Take pizza as an example: How would the quality of a pizza be measured? One method could be to analyze the freshness and nutritious value of the ingredients, but, Pizza Hut notoriously fought Papa John’s Pizza over the assertion that better ingredients make better pizza. Another method could be to analyze the cooking process, like bake time or the order of toppings, but that would be better for identifying carelessness than quality. The delivery process could also be considered, like Domino’s delivery robots, but that evaluates customer service and not the pizza itself.  Ultimately, what matters are the taste and the visual appearance, which are totally subjective to the consumer. Surveys are unreliable. Taste tests have limited selection. Appearance is an art, not a science. Each of these metrics gives a glimpse into quality but does not fully reveal what actually makes a “good” pizza. Together, though, they provide a reasonable picture when the desired metrics are gathered well.

tony_pepperoni-rochester-ny-pizza-coupon

Is that really high quality pizza? Well, what aspects of quality are we measuring? We won’t get a perfect picture of quality from metrics, but we can get a rough idea. Software quality metrics work the same way.

Software Quality

In software, there are three primary types of quality metrics:

  1. Test Quality
    • How effective are tests at enforcing high quality standards?
    • Examples: code coverage, test failure reasons.
  2. Process Quality
    • How effective are processes at delivering good features?
    • Examples: time to fix broken builds, time to discover bugs.
  3. Product Quality
    • How good is the software product?
    • Examples: test failure rate, up-time, customer satisfaction.

The main purpose of software quality metrics is to validate successes and find areas for improvement in the development process. Metrics expose problems like gaps in coverage or slow feedback loops so that a team knows what to improve. They are meant to be informative but not punitive – they should simply report accurate data. Don’t shoot the messenger! For example, if the test failure rate is high, fix the bugs instead of blaming each other.

However, be warned by W. Edwards Deming‘s red bead experiment: Quality cannot be inspected into a product – it must be built in from the beginning! Metrics alone cannot solve problems – they can merely expose them. It is up to the development team to affect the proper change based on what metrics reveal. Awareness is useless without action. And action should ultimately lead to better features, faster delivery, and higher profits.

Choosing Quality Metrics

Metrics are nothing but tools to improve aspects of quality. Not every job needs the full toolbox! Always pick the quality aspect first, and then find the right measuring stick. Don’t just pick some metrics that others say are good. For example, if build stability is the quality aspect that is deemed important (and it should be), then the metric to track it could be the average time to fix a build after it is broken.

The best process for choosing quality metrics is:

  1. Identify a quality aspect that adds value.
  2. Decide if the aspect is worth measuring.
  3. Determine the desired state for that aspect.
  4. Derive the best way to measure progress toward the desired state impartially.
  5. Implement the metric gathering, storage, and analysis.
  6. Revisit the metric periodically to assert its value.
  7. Stop gathering the metric when it ceases to provide value.

Keep in mind that metrics have a cost: they must be gathered, stored, and analyzed. That’s why it’s important to pick the quality aspects that matter most.

This Series

The articles in this series will cover each of the quality metric types in detail. Each will list major quality aspects with meaningful metrics to track them and advice on how to use them. Remember, metrics should be constructive and not destructive.

 

lavemufo_edwards-deming-quote2

 

JavaScript Testing with Jasmine

Table of Contents

  1. Introduction
  2. Setup and Installation
  3. Project Structure
  4. Unit Tests for Functions
  5. Unit Tests for Classes
  6. Unit Tests with Mocks
  7. Integration Tests for REST APIs
  8. End-to-End Tests for Web UIs
  9. Basic Test Execution
  10. Advanced Test Execution with Karma
  11. Angular Testing

Introduction

Jasmine is one of the most popular JavaScript test frameworks available. Its tests are intuitively recognizable by their describe/it format. Jasmine is inspired by Behavior-Driven Development and comes with many basic features out-of-the-box. While Jasmine is renowned for its Node.js support, it also supports Python and Ruby. Jasmine also works with JavaScript-based languages like TypeScript and CoffeeScript.

This guide shows how to write tests in JavaScript on Node.js using Jasmine. It uses the jasmine-node-js-example project (hosted on GitHub). Content includes:

  • Basic white-box unit tests
  • REST API integration tests with frisby
  • Web UI end-to-end tests with Protractor
  • Spying with sinon
  • Monkeypatching with rewire
  • Handling config data with JSON files
  • Advanced execution features with Karma
  • Special considerations for Angular projects

The Jasmine API Reference is also indispensable when writing tests.

Setup and Installation

The official Jasmine Node.js Setup Guide explains how to set up and install Jasmine. Jasmine tests may be added to an existing project or to an entirely new project. As a prerequisite, Node.js must already be installed. Use the following commands to set things up.

# Initialize a new project (if necessary)
# This will create the package.json file
$ mkdir [project-name]
$ cd [project-name]
$ npm init

# Install Jasmine locally for the project and globally for the CLI
$ npm install jasmine
$ npm install -g jasmine

# Create a spec directory with configuration file for Jasmine
$ jasmine init

# Optional: Install official Jasmine examples
# Do this only for self-education in a separate project
$ jasmine examples

The code used by this guide is available in GitHub at jasmine-node-js-example. Feel free to clone this repository to try things out yourself!

Recommended editors and IDEs include Visual Studio Code with the Jasmine Snippets extensions, Atom, and JetBrains WebStorm.

Project Structure

Jasmine does not require the project to have a specific directory layout, but it does use a configuration file to specify where to find tests. The default, conventional project structure created by “jasmine init” puts all Jasmine code into a “spec” directory, which contains “*spec.js” files for tests, helpers that run before specs, and a support directory for config. The JASMINE_CONFIG_PATH environment variable can be set to change the config file used. (The default config file is spec/support/jasmine.json.)

[project-name]
|-- [product source code]
|-- spec
|   |-- [spec sub-directory]
|   |   `-- *spec.js
|   |-- helpers
|   |   `-- [helper sub-directory]
|   `-- support
|       `-- jasmine.json
`-- package.json

This structure may be changed using the “spec_dir”, “spec_files”, and “helpers” properties in the config file. For example, it may be useful to change the structure to include more than one level of directories to the hierarchy. However, it is typically best to leave the conventional directory layout in place. The default config values as of Jasmine 2.8 are below.

{
  "spec_dir": "spec",
  "spec_files": [
    "**/*[sS]pec.js"
  ],
  "helpers": [
    "helpers/**/*.js"
  ],
  "stopSpecOnExpectationFailure": false,
  "random": false
}

It is also a best practice to separate tests between different levels of the Testing Pyramid. The example project has spec subdirectories for unit, integration, and end-to-end tests. Directory-level organization makes it easy to filter tests by level when executed.

Unit Tests for Functions

The most basic unit of code to be tested in JavaScript is a function. The “lib/calculator.functions.js” module contains some basic math functions for easy testing.

// --------------------------------------------------
// lib/calculator.functions.js
// --------------------------------------------------

// Calculator Functions

function add(a, b) {
    return a + b;
}

function subtract(a, b) {
    return a - b;
}

function multiply(a, b) {
    return a * b;
}

function divide(a, b) {
    let value = a * 1.0 / b;
    if (!isFinite(value))
        throw new RangeError('Divide-by-zero');
    else
        return value;
}

function maximum(a, b) {
    return (a &amp;amp;amp;gt;= b) ? a : b;
}

function minimum(a, b) {
    return (a &amp;amp;amp;lt;= b) ? a : b;
}

// Module Exports

module.exports = {
    add: add,
    subtract: subtract,
    multiply: multiply,
    divide: divide,
    maximum: maximum,
    minimum: minimum,
}

Its tests are in “spec/unit/calculator.function.spec.js”. Below is a snippet showing simple tests for the “add” function. A describe block groups a “suite” of specs together. Each it block is an individual spec (or test). Titles for specs are often written as what the spec should do. Describe blocks may be nested for hierarchical grouping, but it blocks (being bottom-level) may not. Assertions are made using Jasmine’s fluent-like expect and matcher methods. Since the functions are stateless, no setup or cleanup is needed. Tests for other math functions are similar.

// --------------------------------------------------
// spec/unit/calculator.function.spec.js
// --------------------------------------------------

const calc = require('../../lib/calculator.functions');

describe("Calculator Functions", function() {

  describe("add", function() {

    it("should add two positive numbers", function() {
      let value = calc.add(3, 2);
      expect(value).toBe(5);
    });

    it("should add a positive and a negative number", function() {
      let value = calc.add(3, -2);
      expect(value).toBe(1);
    });

    it("should give the same value when adding zero", function() {
      let value = calc.add(3, 0);
      expect(value).toBe(3);
    });

  });

});

The divide-by-zero test for the “divide” function is special because it must verify that an exception is thrown. The divide call is wrapped in a function so that it may be passed into the expect call.

  describe("divide", function() {

    // ...

    it("should throw an exception when dividing by zero", function() {
      let divideByZero = function() { calc.divide(3, 0); };
      expect(divideByZero).toThrowError(RangeError, 'Divide-by-zero');
    });

    // ...

  });

The “maximum” and “minimum” functions have parametrized tests using the Array class’s forEach method. This is a nifty trick for hitting multiple input sets without duplicating code or combining specs. Note that the spec titles are also parametrized. Tests for “maximum” are shown below.

  describe("maximum", function() {

    [
      [1, 2, 2],
      [2, 1, 2],
      [2, 2, 2],
    ].forEach(([a, b, expected]) =&amp;amp;amp;gt; {
      it(`should return ${expected} when given ${a} and ${b}`, () =&amp;amp;amp;gt; {
        let value = calc.maximum(a, b);
        expect(value).toBe(expected);
      });
    });

  });

Unit Tests for Classes

Jasmine can also test classes. When testing classes, setup and cleanup routines become more helpful. The Calculator class in the “lib/calculator.class.js” module calls the math functions and caches the last answer.

// --------------------------------------------------
// lib/calculator.class.js
// --------------------------------------------------

// Imports

const calcFunc = require('./calculator.functions');

// Calculator Class

class Calculator {

  constructor() {
      this.last_answer = 0;
  }

  do_math(a, b, func) {
      return (this.last_answer = func(a, b));
  }

  add(a, b) {
      return this.do_math(a, b, calcFunc.add);
  }

  subtract(a, b) {
      return this.do_math(a, b, calcFunc.subtract);
  }

  multiply(a, b) {
      return this.do_math(a, b, calcFunc.multiply);
  }

  divide(a, b) {
      return this.do_math(a, b, calcFunc.divide);
  }

  maximum(a, b) {
      return this.do_math(a, b, calcFunc.maximum);
  }

  minimum(a, b) {
      return this.do_math(a, b, calcFunc.minimum);
  }

}

// Module Exports

module.exports = {
  Calculator: Calculator,
}

The Jasmine specs in “spec/unit/calculator.class.spec.js” are very similar but now call the beforeEach method to construct the Calculator object before each scenario. (Jasmine also has methods for afterEach, beforeAll, and afterAll.) The verifyAnswer helper function also makes assertions easier. The addition tests are shown below.

// --------------------------------------------------
// spec/unit/calculator.class.spec.js
// --------------------------------------------------

const calc = require('../../lib/calculator.class');

describe("Calculator Class", function() {

  let calculator;

  beforeEach(function() {
    calculator = new calc.Calculator();
  });

  function verifyAnswer(actual, expected) {
    expect(actual).toBe(expected);
    expect(calculator.last_answer).toBe(expected);
  }

  describe("add", function() {

    it("should add two positive numbers", function() {
      verifyAnswer(calculator.add(3, 2), 5);
    });

    it("should add a positive and a negative number", function() {
      verifyAnswer(calculator.add(3, -2), 1);
    });

    it("should give the same value when adding zero", function() {
      verifyAnswer(calculator.add(3, 0), 3);
    });

  });

  // ...

});

Unit Tests with Mocks

Mocks help to keep unit tests focused narrowly upon the unit under test. They are essential when units of code depend upon other callable entities. For example, mocks can be used to provide dummy test values for REST APIs instead of calling the real endpoints so that receiving code can be tested independently.

Jasmine’s out-of-the-box spies can do some mocking and spying, but it is not very powerful. For example, it doesn’t work when members of one module call members of another, or even when members of the same module call each other (unless they are within the same class). It is better to use rewire for monkey-patching (mocking via member substitution) and sinon for stubbing and spying.

The “lib/weather.js” module shows how mocking can be done with member dependencies. The WeatherCaller class’s “getForecast” method calls the “callForecast” function, which is meant to represent a service call to get live weather forecasts. The “callForecast” function returns an empty object, but the specs will “rewire” it to return dummy test values that can be used by the WeatherCaller class. Rewiring will work even though “callForecast” is not exported!

// --------------------------------------------------
// lib/weather.js
// --------------------------------------------------

function callForecast(month, day, year, zipcode) {
  return {};
}

class WeatherCaller {

  constructor() {
    this.forecasts = {};
  }

  getForecast(month, day, year, zipcode) {
    let key = `${month}/${day}/${year} for ${zipcode}`;
    if (!(key in this.forecasts)) {
      this.forecasts[key] = callForecast(month, day, year, zipcode);
    }
    return this.forecasts[key];
  }

}

module.exports = {
  WeatherCaller: WeatherCaller,
}

The tests in “spec/unit/weather.mock.spec.js” monkey-patch the “callForecast” function with a sinon stub in the beforeEach call so that each test has a fresh spy count. Note that the weather method is imported using “rewire” instead of “require” so that it can be monkey-patched. Even though the original function returns an empty object, the tests pass because the mock returns the dummy test value.

// --------------------------------------------------
// spec/unit/weather.mock.spec.js
// --------------------------------------------------

// Imports

const rewire = require('rewire');
const sinon = require('sinon');

// Rewirings

const weather = rewire('../../lib/weather');

// WeatherCaller Specs
describe("WeatherCaller Class", function() {

  // Test constants
  const dummyForecast = {"high": 42, "low": 26};

  // Test variables
  let callForecastMock;
  let weatherModuleRestore;
  let weatherCaller;

  beforeEach(function() {
    // Mock the inner function's return value using sinon
    // Do this for each test to avoid side effects of call count
    callForecastMock = sinon.stub().returns(dummyForecast);
    weatherModuleRestore = weather.__set__("callForecast", callForecastMock);

    // Construct the main caller object
    weatherCaller = new weather.WeatherCaller();
  });

  it("should be empty upon construction", function() {
    // No mocks required here
    expect(Object.keys(weatherCaller.forecasts).length).toBe(0);
  });

  it("should get a forecast for a date and a zipcode", function() {
    // This simply verifies that the return value is correct
    let forecast = weatherCaller.getForecast(12, 25, 2017, 21047);
    expect(forecast).toEqual(dummyForecast);
  });

  it("should get a fresh forecast the first time", function() {
    // The inner function should be called and the value should be cached
    // Note the sequence of assertions, which guarantee safety
    let forecast = weatherCaller.getForecast(12, 25, 2017, 21047);
    const forecastKey = "12/25/2017 for 21047";
    expect(callForecastMock.called).toBeTruthy();
    expect(Object.keys(weatherCaller.forecasts).length).toBe(1);
    expect(forecastKey in weatherCaller.forecasts).toBeTruthy();
    expect(weatherCaller.forecasts[forecastKey]).toEqual(dummyForecast);
  });

  it("should get a cached forecast the second time", function() {
    // The inner function should be called only once
    // The same object should be returned by both method calls
    let forecast1 = weatherCaller.getForecast(12, 25, 2017, 21047);
    let forecast2 = weatherCaller.getForecast(12, 25, 2017, 21047);
    expect(callForecastMock.calledOnce).toBeTruthy();
    expect(forecast1).toBe(forecast2);
  });

  it("should get and cache multiple forecasts", function() {
    // The other tests verify the mechanics of individual calls
    // This test verifies that the caller can handle multiple forecasts

    // Initial forecasts
    let forecast1 = weatherCaller.getForecast(12, 25, 2017, 27518);
    let forecast2 = weatherCaller.getForecast(12, 25, 2017, 27518);
    let forecast3 = weatherCaller.getForecast(12, 25, 2017, 21047);

    // Change forecast value
    weatherModuleRestore();
    const newForecast = {"high": 39, "low": 18}
    callForecastMock = sinon.stub().returns(newForecast);
    weatherModuleRestore = weather.__set__("callForecast", callForecastMock);

    // More forecasts
    let forecast4 = weatherCaller.getForecast(12, 26, 2017, 21047);
    let forecast5 = weatherCaller.getForecast(12, 27, 2017, 21047);

    // Assertions
    expect(Object.keys(weatherCaller.forecasts).length).toBe(4);
    expect("12/25/2017 for 27518" in weatherCaller.forecasts).toBeTruthy();
    expect("12/25/2017 for 21047" in weatherCaller.forecasts).toBeTruthy();
    expect("12/26/2017 for 21047" in weatherCaller.forecasts).toBeTruthy();
    expect("12/27/2017 for 21047" in weatherCaller.forecasts).toBeTruthy();
    expect(forecast1).toEqual(dummyForecast);
    expect(forecast2).toEqual(dummyForecast);
    expect(forecast3).toEqual(dummyForecast);
    expect(forecast4).toEqual(newForecast);
    expect(forecast5).toEqual(newForecast);
  });

  afterEach(function() {
    // Undo the monkeypatching
    weatherModuleRestore();
  });

});

Integration Tests for REST APIs

Jasmine can do black-box tests just as well as it can do white-box tests. Testing REST API service calls are some of the most common integration-level tests. There are many REST request packages for Node.js, but frisby is particularly designed for testing. Frisby even has its own expect methods (though the standard Jasmine expect and matchers may still be used).

A best practice for black-box tests is to put config data for external dependencies into a config file. Config data for REST API calls could be URLs, usernames, and passwords. Never hard-code config data into test automation. JavaScript config files are super simple: just write a JSON file and read it during test setup using the “require” function, just like any module. The config data will be automatically parsed as a JavaScript object!

Below is an example test for calling Wikipedia’s REST API. It reads the base URL from a config file and uses it in the frisby call. The config file:

// --------------------------------------------------
// spec/support/env.json
// --------------------------------------------------
{
  "integration" : {
    "wikipediaServiceBaseUrl": "https://en.wikipedia.org/api/rest_v1"
  }
}

And the spec:

// --------------------------------------------------
// spec/integration/wikipedia.service.spec.js
// --------------------------------------------------

const frisby = require('frisby');

describe("English Wikipedia REST API", function() {

  const ENV = require("../support/env.json");
  const BASE_URL = ENV.integration.wikipediaServiceBaseUrl;

  describe("GET /page/summary/{title}", function() {

    it("should return the summary for the given page title", function(done) {
      frisby
        .get(BASE_URL + "/page/summary/Pikachu")
        .then(function(response) {
          expect(response.status).toBe(200);
          expect(response.json.title).toBe("Pikachu");
          expect(response.json.pageid).toBe(269816);
          expect(response.json.extract).toContain("Pokémon");
        })
        .done(done);
    })

  });

  // ...
});

End-to-End Tests for Web UIs

Jasmine can also be used for end-to-end Web UI tests. One of the most popular packages for web browser automation is Selenium WebDriver, which uses programming calls to interact with a browser like a real user. Selenium releases a WebDriver package for JavaScript for Node.js, but it is typically a better practice to use Protractor.

Protractor integrates WebDriver with JavaScript test frameworks to make it easier to use. By default, Jasmine is the default framework for Protractor, but Mocha, Cucumber, and any other JavaScript framework could be used. One of the best advantages Protractor has over WebDriver by itself is that Protractor does automatic waiting: explicit calls to wait for page elements are not necessary. This is a wonderful feature that eliminates a lot of repetitive automation code. Protractor also provides tools to easily set up the Selenium Server and browsers (including mobile browsers). Even though Protractor is designed for Angular apps, it can nevertheless be used for non-Angular front-ends.

Web UI tests can be quite complicated because they cover many layers and require extra configuration. Web page interactions frequently need to be reused, too. It is a best practice to use a pattern like the Page Object Model to handle web interactions in one reusable layer. Page objects pull WebDriver locators and actions out of test fixtures (like describe/it functions) so that they may be updated more easily when changes are developed for the actual web pages. (In fact, some teams choose to co-locate page object classes with product source code for the web app so that both are updated simultaneously.) The Page Object Model is a great way to manage the inherently complicated Web automation design.

This guide does not provide a custom example for Protractor with Jasmine because the Protractor documentation is pretty good. It contains a decent tutorial, setup and config instructions, framework integrations, and a full reference. Furthermore, proper Protractor setup requires careful local setup with a live site to test. Please refer to the official doc for more information. Most of the examples in the doc use Jasmine.

Basic Test Execution

The simplest way to run Jasmine tests is to use the “jasmine” command. Make sure you are in the project’s root directory when running tests. Below are example invocations.

# Run all specs in the project (according to the Jasmine config)
$ jasmine

# Run a specific spec by file path
$ jasmine spec/integration/wikipedia.service.spec.js

# Run all specs that match a path pattern
# Warning: this call is NOT recursive and will not search sub-directories!
$ jasmine spec/unit/*

# Run all specs whose titles match a regex filter
# This searches both "describe" and "it" titles
$ jasmine --filter="Calculator"

# Stop testing after the first failure happens
$ jasmine --stop-on-failure=true

# Run tests in a random order
# Optionally include a seed value
$ jasmine --random=true --seed=4321

Test execution options may also be set in the Jasmine config file.

Advanced Test Execution with Karma

Karma is a self-described “spectacular test runner for JavaScript.” Its main value is that it runs JavaScript tests in live web browsers (rather than merely on Node.js), testing actual browser compatibility. In fact, developers can keep Karma running while they develop code so they can see test results in real time as they make changes. Karma integrates with many test tools (including Istanbul for code coverage) and frameworks (including Jasmine). Karma itself runs on Node.js and is distributed as a number of packages for different browsers and frameworks. Check out this Google Testing Blog article to learn the original impetus behind developing Karma, originally called “Testacular.”

Karma and Protractor are similar in that they run tests against real web browsers, but they serve different purposes. Karma is meant for running unit tests against JavaScript code, whereas Protractor is meant for running end-to-end tests against a full, live site like a user. Karma tests go through a “back door” to exercise pieces of a site. Karma and Protractor are not meant to be used together for the same tests (see Protractor Issue #9 on GitHub). However, one project can use both tools at their appropriate test layers, as done for standard Angular testing.

This guide does not provide a custom example for Karma with Jasmine because it requires local setup with the right packages and browser versions. Karma packages are distributed through npm. Karma with Jasmine requires the main karma package, the karma-jasmine package, and a launcher package for each desired browser (like karma-chrome-launcher). There are also plenty of decent examples online here, here, and here. Please refer to the official Karma documentation for more info.

Running Jasmine tests with Karma is not without its difficulties, however. One challenge is handling modules and imports. ECMAScript 6 (ES6) has a totally new syntax for modules and imports that is incompatible with the CommonJS module system with require used by Node.js. Node.js is working on ES6-style module support, but at the time this article was written, full support was not yet available. Module imports are troublesome for Karma because Karma is launched from Node.js (requiring require) but runs in a browser (which doesn’t support require). There are a few workarounds:

  • Use RequireJS to load modules.
  • Use Browserify to make require work in browsers.
  • Use rollup.js to bundle all modules into one to sidestep imports.
  • Use Angular with TypeScript, which builds and links everything automatically.

Angular Testing

Angular is a very popular front-end Web framework. It is a complete rewrite of AngularJS and is seen as an alternative to React. One of Angular’s perks is its excellent support for testing. Out of the box, new Angular projects come with config for unit testing with Jasmine/Karma and end-to-end testing with Jasmine/Protractor. It’s easy to integrate other automation tools like Istanbul code coverage or HTML reporting. Standard Angular projects using TypeScript also don’t suffer from the module import problem: imports are linked properly when TypeScript is compiled into JavaScript.

Angular unit tests are written just like any other Jasmine unit tests except for one main difference: the Angular testing utilities. These extra packages create a test environment (a “TestBed”) for testing each part of the Angular app internally and independently. Dependencies can be easily stubbed and mocked using Jasmine’s spies, with no need for sinon since everything binds. NGRX also provides extended test utilities. The Angular testing utilities can seem overwhelming at first, but together with Jasmine, they make it easy to write laser-precise unit tests.

Another interesting best practice for Angular unit tests is to co-locate them with the modules they cover. For every *.js/*.ts file, there should be a *.spec.js/*.spec.ts file with the covering describe/it tests. This is not common practice for unit tests, but the Angular doc notes many advantages: tests are easy to find, coverage is roughly visual, and updates are less likely forgotten. The automatically-generated test config has settings to search the whole project for spec files.

Angular end-to-end tests are treated differently from unit tests, however. Since they test the app as a whole, they don’t use the Angular testing utilities, and they should be located in their own directory (usually named “e2e”). Thus, Angular end-to-end tests are really no different than any other Web UI tests that use Protractor. Jasmine is the default test framework, but it may be advantageous to switch to Cucumber.js for all the advantages of BDD.

This guide does not provide Angular testing examples because the official Angular documentation is stellar. It contains a tutorial, a whole page on testing, and live examples of tests (linked from the testing page).

To Infinity and Beyond: A Guide to Parallel Testing

Are your automated tests running in parallel? If not, then they probably should be. Together with continuous integration, parallel testing the best way to fail fast during software development and ultimately enforce higher software quality. Switching tests from serial to parallel execution, however, is not a simple task. Tests themselves must be designed to run concurrently without colliding, and extra tools and systems are needed to handle the extra stress. This article is a high-level guide to good parallel testing practices.

What is Parallel Testing?

Parallel testing means running multiple automated tests simultaneously to shorten the overall start-to-end runtime of a test suite. For example, if 10 tests take a total of 10 minutes to run, then 2 parallel processes could execute 5 tests each and cut the total runtime down to 5 minutes. Even better, 10 processes could execute 1 test each to shrink runtime to 1 minute. Parallel testing is usually managed by either a test framework or a continuous integration tool. It also requires more compute resources than serial testing.

Why Go Parallel?

Running automated tests in parallel does require more effort (and potentially cost) than running tests serially. So, why go through the trouble?

The answer is simple: time. It is well documented that software bugs cost more when they are discovered later. That’s why current development practices like Agile and BDD strive to avoid problems from the start through small iterations and healthy collaboration (“shift left“), while CI/CD defensively catches regressions as soon as they happen (“fail fast“). Reducing the time to discover a problem after it has been introduced means higher quality and higher productivity.

Ideally, a developer should be told if a code change is good or bad immediately after committing it. The change should automatically trigger a new build that runs all tests. Unfortunately, tests are not instantaneous – they could take minutes, hours, or even days to complete. A test automation strategy based on the Testing Pyramid will certainly shorten start-to-end execution time but likely still require parallelization. Consider the layers of the Testing Pyramid and their tests’ average runtimes, the Testing Pyramid Rule of 1’s:

The Testing Pyramid with Times

Each layer is listed above with the rough runtime of a typical test. Though actual runtimes will vary, the Rule of 1’s focuses on orders of magnitude. Unit tests typically run in milliseconds because they often exercise product code in memory. Integration tests exercise live products but are limited in scope and often cover low-level areas (like REST service calls). End-to-end tests, however, cover full paths through a live system, which requires extra setup and waiting (like Selenium WebDriver interaction).

Now, consider how many tests from each layer could be run within given time limits, if the tests are run serially:

Test Layer 1 Minute
Near-Instant
10 Minutes
Coffee Break
1 Hour
There Goes Today
Unit 60,000 600,000 3,600,000
Integration 60 600 3,600
End-to-End 1 10 60

Unit test numbers look pretty good, though keep in mind 1 millisecond is often the best-case runtime for a unit test. Integration and end-to-end runtimes, however, pose a more pressing problem. It is not uncommon for a project to have thousands of above-unit tests, yet not even a hundred end-to-end tests could complete within an hour, nor could a thousand integration tests complete within 10 minutes. Now, consider two more facts: (1) tests often run as different phases in a CI pipeline, to total runtimes are stacked, and (2) multiple commits would trigger multiple builds, which could cause a serious backup. Serial test execution would starve engineering feedback in any continuous integration system of scale. A team would need to drastically shrink test coverage or give up on being truly “continuous” in favor of running tests daily or weekly. Neither alternative is acceptable these days. CI needs parallel testing to be truly continuous.

The Danger of Collisions

The biggest danger for parallel testing is collision – when tests interfere with each other, causing invalid test failures. Collisions may happen in the product under test if product state is manipulated by more than one test at a time, or they may happen in the automation code itself if the code is not thread-safe. Collisions are also inherently intermittent, which makes them all the more difficult to diagnose. As a design principle, automated tests must avoid collisions for correct parallel execution.

Making tests run in parallel is not as simple as flipping a switch or adding a new config file. Automated tests must be specifically designed to run in parallel. A team may need to significantly redevelop their automation code to make parallel execution work right.

train-collision-in-iran-at-least-5-killed-aa48cb33e0af63ac1632c64194621469

A train collision in Iran in November 2016. Don’t let this happen to your tests!

Handling Product-Level Collisions

Product-level collisions essentially reduce to how environments are set up and handled.

Separate Environments

The most basic way to avoid product-level collisions would be to run each test thread or process against its own instance of the product in an exclusive environment. (In the most extreme case, every single test could have its own product instance.) No collisions would happen in the product because each product instance would be touched by only one test instance at a time. Separate environments are possible to implement using various configuration and deployment tools. Docker containers are quick and easy to spin up. VMs with Vagrant, Puppet, Chef, and/or Ansible can also get it done.

However, it may not always be sensible to make separate environments for each test thread/process:

  • Creating a new environment is inefficient – it takes extra time to set up that may cancel out any time saved from parallel execution.
  • Many projects simply don’t have the money or the compute resources to handle a massive scale-out.
  • Some tests may not cause collisions and therefore may not need total isolation.
  • Some product environments are extremely large and complicated and would not be practical to replicate for each test individually.

Shared Environments

Environments with a shared product instance are quite common. One could be a common environment that everyone on a team shares, or one could be freshly created during a CI run and accessed by multiple test threads/processes. Either way, product-level collisions are possible, and tests must be designed to avoid clashing product states. Any test covering a persistent state is vulnerable; usually, this is the vast majority of tests. Consider web app testing as an example. Tests to load a page and do some basic interactions can probably run in parallel without extra protection, but tests that use a login to enter data or change settings could certainly collide. In this case, collisions could be avoided by using different logins for each simultaneous test instance – by using either a pool of logins, a unique login per test case, or a unique login per thread/process. Each product is different and will require different strategies for avoiding collisions.

the_earth_seen_from_apollo_17

We all share certain environments. Take care of them when you do. (Photo: The Blue Marble, taken by the Apollo 17 crew on Dec 7, 1972)

Handling Automation-Level Collisions

Automation-level collisions can happen when automation code is not thread-safe, which could mean more than simply locks and semaphores.

#1: Test Independence

Test cases must be completely independent of each other. One test must not require another test to run before it for the sake of setup. A test case should be able to run by itself without any others. A test suite should be able to run successfully in random order.

#2: Proper Variable Scope

If parallel tests will be run in the same memory address space, then it is imperative to properly scope all variables. Global or static mutable variables (e.g., “non-constants”) must not be allowed because they could be changed unexpectedly. The best pattern for handling scope is dependency injection. Thread-safe singletons would be a second choice. (Typically, global or static variables are used to subvert design patterns, so they may reveal further necessary automation rework when discovered.)

#3: External Resources

Automation may sometimes interact with external resources, such as test config files or test result databases/services. Make sure no external interactions collide. For example, make sure test run updates don’t overwrite each other.

#4: Logging

Logs are very difficult to trace when multiple tests are simultaneously printed to the same file. The best practice is to generate separate log files for each test case, thread, or process to make them readable.

#5: Result Aggregation

A test suite is a unified collection of tests, no matter how many threads/processes are used to run its tests in parallel. Make sure test results are aggregated together into one report. Some frameworks will do this automatically, while others will require custom post-processing.

#6: Test Filtering

One strategy to avoid collisions may be to run non-colliding partitions (subsets) of tests in parallel. Test tagging and filtering would make this possible. For example, tests that require a special login could be tagged as such and run together on one thread.

Test Scalability

The previous section on collisions discussed how to handle product environments. It is also important to consider how to handle the test automation environment. These are two different things: the product environment contains the live product under test, while the test environment contains the automation software and resources that run tests against the product. The test environment is where the parallel tests will be executed, and, as such, it must be scalable to handle the parallelization. A common example of a test environment could be a Jenkins master with a few agents for running build pipelines. There are two primary ways to scale the test environment: scale-up and scale-out.

Parallel Scale-Up

Scale-up is when one machine is configured to handle more tests in parallel. For example, scale-up would be when a machine switches from one (serial) thread to two, three, or even more in parallel. Many popular test runners support this type of scale-up by spawning and joining threads in a common memory address space or by forking processes. (For example, the SpecFlow+ Runner lets you choose.)

Scale-up is a simple way to squeeze as much utility out of an existing machine as possible. If tests are designed to handle collisions, and the test runner has out-of-the-box support, then it’s usually pretty easy to add more test threads/processes. However, parallel test scale-up is inherently limited by the machine’s capacity. Each additional test process succumbs to the law of diminishing returns as more memory and processor cycles are used. Eventually, adding more threads will actually slow down test execution because the processor(s) will waste time constantly switching between tests. (Anecdotally, I found the optimal test-thread-to-processor ratio to be 2-to-1 for running C#/SpecFlow/Selenium-WebDriver tests on Amazon EC2 M4 instances.) A machine itself could be upgraded with more threads and processors, but nevertheless, there are limits to a single machine’s maximum capacity. Weird problems like TCP/IP port exhaustion may also arise.

Scale Up

Scale-up adds more threads to one machine.

Parallel Scale-Out

Scale-out is when multiple machines are configured to run tests in parallel. Whereas scale-up had one machine running multiple tests, scale-out has multiple machines each running tests. Scale-out can be achieved in a number of ways. A few examples are:

  • One master test execution machine launches multiple Web UI tests that each use a remote Selenium WebDriver with a service like Selenium Grid, Sauce Labs, or BrowserStack.
  • A Jenkins pipeline launches tests across ten agents in parallel, in which each agent executes a tenth of the tests independently.

Scale-out is a better long-term solution than scale-up because scale-out can handle an unlimited number of machines for parallel testing. The limiting factor with scale-out is not the maximum capacity of the hardware but rather the cost of running more machines. However, scale-out is much harder to implement than scale-up. It requires tests to be evenly divided with some sort of balancer and filter. It also requires some sort of test result aggregation for joint reporting – people won’t want to piece together a bunch of separate reports to get an overall snapshot of quality. Plus, the test environment is more complicated to build and maintain (though tools like CloudBees Jenkins Enterprise or Amazon EC2 can make it easier.)

Scale Out

Scale-out distributes tests across multiple machines.

Upwards and Outwards

Of course, scale-up and scale-out are not mutually exclusive. Scaled-out nodes could individually be scaled-up. Consider a test environment with 10 powerful VMs that could each handle 10 tests in parallel – that means 100 tests could run simultaneously. Using the Rule of 1’s, it would take only about a minute to run 100 Web UI tests, which serially would have taken over an hour and a half! Use both strategies to shorten start-to-end runtime as much as possible.

Conclusion

Parallel testing is a worthwhile endeavor. When done properly, it will not only reduce development time but also improve the development experience. For readers who want to start doing parallel testing, I recommend researching the tools and frameworks you want to use. Many popular test frameworks support parallel execution, and even if the one you choose doesn’t, you can always invoke tests in parallel from the command line. Do well!

Software Testing Lessons from Luigi’s Mansion

How can lessons from Luigi’s Mansion apply to software testing and automation?

Luigi’s Mansion is a popular Nintendo video game series. It’s basically Ghostbusters in the Super Mario universe: Luigi must use a special vacuum cleaner to rid haunted mansions of the ghosts within. Along the way, Luigi also solves puzzles, collects money, and even rescues a few friends. I played the original Luigi’s Mansion game for the Nintendo GameCube when I was a teenager, and I recently beat the sequel, Luigi’s Mansion: Dark Moon, for the Nintendo 3DS. They were both quite fun! And there are some lessons we can apply from Luigi’s Mansion to software testing and automation.

#1: Exploratory Testing is Good

The mansions are huge – Luigi must explore every nook and cranny (often in the dark) to spook ghosts out of their hiding places. There are also secrets and treasure hiding in plain sight everywhere. Players can easily miss ghosts and gold alike if they don’t take their time to explore the mansions thoroughly. The same is true with testing: engineers can easily miss bugs if they overlook details. Exploratory testing lets engineers freely explore the product under test to uncover quality issues that wouldn’t turn up through rote test procedures.

#2: Expect the Unexpected

Ghosts can pop out from anywhere to scare Luigi. They also can create quite a mess of the mansion – blocking rooms, stealing items, and even locking people into paintings! Software testing is full of unexpected problems, too. Bugs happen. Environments go down. Network connections break. Even test automation code can have bugs. Engineers must be prepared for any emergency regardless of origin. Software development and testing is about solving problems, not about blame-games.

#3: Don’t Give Up!

Getting stuck somewhere in the mansion can be frustrating. Some puzzles are small, while others may span multiple rooms. Sometimes, a player may need to backtrack through every room and vacuum every square inch to uncover a new hint. Determination nevertheless pays off when puzzles get solved. Software engineers must likewise never give up. Failures can be incredibly complex to identify, reproduce, and resolve. Test automation can become its own nightmare, too. However, there is always a solution for those tenacious (or even hardheaded) enough to find it.

 

Want to see what software testing lessons can be learned from other games? Check out Gotta Catch ’em All! for Pokémon!