BDD

Gherkin Syntax Highlighting in Visual Studio Code

Visual Studio Code is an incredible code editor that’s on the rise. It offers the power of an IDE with the speed and simplicity of a lightweight text editor, similar to Sublime, Atom, and Notepad++. If you’re a BDD addict, then VS Code is a great choice for writing Gherkin features, too! There are a number of extensions for Gherkin. Which one is the best? Below is my recommendation.

TL;DR

Install both:

Extension #1

VS Code has a few free extensions to support Gherkin. The first one I tried was Cucumber (Gherkin) Full Support. This one had the highest number of installs. When I started writing feature files, it provided snippets for each section and syntax colors. The documentation said it could also provide step suggestions (meaning, I type “Given” and it shows me all available Given steps) and navigation to step definition code, but since it looked like it only worked for JavaScript, I didn’t try it myself. that left me with no step suggestions. The indentation looked off, too. Not perfect. I wanted a better extension.

This slideshow requires JavaScript.

Extension #2

The second one I tried was Snippets and Syntax Highlight for Gherkin (Cucumber). It provides colorful syntax highlighting and a few three-letter snippets for Gherkin keywords. When I typed “fea”, a full template for a Feature section appeared with user story stubs (“In order to ___, As a ___, I want ___”). Nice! Good practice. The “sce” snippet did the same thing for the Scenario section with Given, When, and Then steps. Each section was indented nicely, too. The only downside was the lack of a snippet for Examples tables. Nevertheless, tables were still highlighted. But again, no step suggestions.

This slideshow requires JavaScript.

Extension #3

The third extension I tried was Feature Syntax Highlight and Snippets (Cucumber). It was very similar to the previous extension, but it used different colors. The snippet shortcuts were also not as intuitive – they used the letter “f” for feature followed by the first letter of the section. For example, “ff” was a Feature section, and “fs” was a Scenario section. Unfortunately, this extension did not provide step suggestions. Comments and example table rows did not get highlighted, either. Personally, I preferred the previous extension’s color scheme.

This slideshow requires JavaScript.

Extension #4

The fourth extension I tried was Gherkin step autocomplete. This one promised step suggestions! However, I had some trouble setting it up. When I enabled the extension by itself, feature files did not show any syntax highlighting, and the steps had no suggestions. What? Lame. What the README doesn’t say is that it relies on a separate extension for feature file support. So, I enabled extension #2 together with this one. Then, I had to move my feature file into a project-root-level directory named “features.” (This path could be customized in the extension’s settings, but “features” is the default.) And, voila! I got pretty colors and step suggestions.

This slideshow requires JavaScript.

But Wait, There’s More!

There were even more extensions for Gherkin. I was happy with #2 and #4, so I didn’t try others. The others also didn’t have as many installations. If anyone finds goodness out of others, please post in the comments!

Why Choose BDD Over Other Test Frameworks?

People are heavily opinionated about Behavior-Driven Development. I frequently hear opponents say things like this:

Why would I use a BDD test framework instead of a traditional test framework like JUnit, NUnit, or pytest? The extra layer of plain language Gherkin steps gets in the way of the automation code. I can directly write code for those steps instead. BDD frameworks require lots of extra work that just doesn’t seem to add value. My team isn’t doing behavior-driven development practices, anyway.

I can sympathize with these sentiments, especially for those who have participated in projects where BDD was done poorly. Even if a team isn’t doing full behavior-driven development practices, I still assert that BDD test automation frameworks are better than traditional test frameworks for most feature testing (above-unit, black box). Here are reasons why.

Separation of Test Cases from Test Code

Test cases and test code are separate concerns. I should be able to design, discuss, and digest a test case without ever touching code. We describe features in plain language, and so we should also describe tests in plain language. Step definitions are nothing more than the automation behind the test case steps. Traditional test frameworks simply don’t have this separation of concerns, even if test methods are loaded with comments.

Guide Rails

BDD frameworks enforce good structure and layers for automation. There are designated places for test cases, step definitions, and support classes. The framework encourages good practices. Traditional test framework, however, are much more free-form. Programmers can do scary and stupid things with test classes. Functionally, a traditional test framework can still be structured well with layers and support classes, but it’s not required. Based on my experiences seeing less experienced automationeers shoving everything into Frankenstein’ed test methods, I much prefer to have the guide rails of a BDD framework.

Inherent Reusability

Steps are the building blocks of test cases, and test cases almost always have the same steps. BDD frameworks identify the step as a unique concern. One step with its definition can be used by any scenario, and steps can be parametrized for flexibility. This creates a “snowball” effect once enough steps have been developed: new tests may not require any new automation code! Traditional test frameworks simply don’t have this mechanism. It could be implemented by calling functions and classes outside of test classes, but not all automationeers are disciplined to do so, and everyone who does it will do it differently.

Aspect-Oriented Controls

Good frameworks handle cross-cutting concerns automatically. Things like logging, dependency injection, and cleanup shouldn’t interfere with test cases. BDD frameworks provide hooks to insert extra logic for these concerns around steps, scenarios, features, and even the whole test suite. Hooks can squeeze into steps because the framework is structured around steps. For example, hooks can automatically log steps to Extent Reports, instead of forcing programmers to write explicit logging calls in each test method.

giphy

The HOOKS, me bucko!

Easier Reviews

Nothing ruins your day like an illegible code review on features you don’t know. You are responsible for providing valuable feedback, but you can’t figure out what’s going on in the short amount of time you can dedicate to the review. Good Gherkin, however, makes it easy. A reviewer can review the test case apart from any code first to make sure it is a good test case. At this level, the reviewer could even be a non-technical person like a product owner. Then, the reviewer can either send the test case back with suggestions or, if the test case passes muster, dig deeper into the automation code.

Easier Onboarding

It can be hard to onboard new team members. They have so much to learn about the product, the code base, and the team practices. If tests are written using a BDD framework, then newbies can learn the features simply by reading the behavior specs. New automationeers likewise can rely on existing steps both for reuse and for examples as they develop new tests.

Other Reasons?

I’m sure there are other benefits to BDD frameworks, but these are the big ones for me. It’s an opinionated thing. Feel free to add comments below!

Are Multiple Scenario Outlines in a Feature File Okay?

Recently, someone asked me:

In Gherkin, is it good or bad practice to have multiple Scenario Outlines with Examples tables in one feature file?

The short answer is yes, it is perfectly fine to have multiple Scenario Outlines within one feature file.

However, the unspoken concern with this question is the potential size of the feature file. If one Feature has multiple Scenario Outlines with large feature tables, then the feature file could become unreadable. Remember, Gherkin is a specification language, not a programming language. A feature file should look more like a meaningful behavior example than a giant wall of text or a low-level test script. Make sure to follow good Gherkin guidelines:

  • Follow the Golden Gherkin Rule: Treat other readers as you would want to be treated.
  • Follow the Cardinal Rule of BDD: One scenario, one behavior.
  • Write declarative steps, not imperative ones.
  • Try to limit the number of steps in each scenario to single digits.
  • Use only a few rows and columns per example table.

Use, but don’t abuse, the templating facet of Scenario Outlines!

Python Testing 101: behave

Warning: If you are new to BDD, then I strongly recommend reading the BDD 101 series before trying to use the behave framework.

Overview

behave is a behavior-driven (BDD) test framework that is very similar to Cucumber, Cucumber-JVM, and SpecFlow. BDD frameworks are unique in that test cases are not written in raw programming code but rather in plain specification language that is then “glued” to code. The “behavior specs” help to define what the behavior is, and steps can be reused by multiple test cases (or “scenarios”). This is very different from more traditional frameworks like unittest and pytest. Although behave is not an official Cucumber variant, it still uses the Gherkin language (“Given-When-Then”) for behavior specification.

Test scenarios are written in Gherkin “.feature” files. Each Given, When, and Then step is “glued” to a step definition – a Python function decorated by a matching string in a step definition module. The behave framework essentially runs feature files like test scripts. Hooks (in “environment.py”) and fixtures can also insert helper logic for test execution.

behave is officially supported for Python 2, but it seems to run just fine using Python 3.

Installation

Use pip to install the behave module.

pip install behave

Project Structure

Since behave is an opinionated framework, it has a very opinionated project structure. All code must be located under a directory named “features”. Gherkin feature files and the “environment.py” file for hooks must appear under “features”, and step definition modules must appear under “features/steps”. Configuration files can store common execution settings and even override the path to the “features” directory.

Note: Step definition module names do not need to be the same as feature file names. Any step definition can be used by any feature file within the same project.

[project root directory]
|‐‐ [product code packages]
|-- features
|   |-- environment.py
|   |-- *.feature
|   `-- steps
|       `-- *_steps.py
`-- [behave.ini|.behaverc|tox.ini|setup.cfg]

Example Code

An example project named behavior-driven-python located in GitHub shows how to write tests using behave. This section will explain how the Web tests are designed.

The top layer in a behave project is the set of Gherkin feature files. Notice how the scenario below is concise, focused, meaningful, and declarative:

@web @duckduckgo
Feature: DuckDuckGo Web Browsing
  As a web surfer,
  I want to find information online,
  So I can learn new things and get tasks done.

  # The "@" annotations are tags
  # One feature can have multiple scenarios
  # The lines immediately after the feature title are just comments

  Scenario: Basic DuckDuckGo Search
    Given the DuckDuckGo home page is displayed
    When the user searches for "panda"
    Then results are shown for "panda"

Each scenario step is “glued” to a decorated Python function called a step definition. Step defs can use different types of step matchers and can also take parametrized inputs:

from behave import *
from selenium.webdriver.common.keys import Keys

DUCKDUCKGO_HOME = 'https://duckduckgo.com/'

@given('the DuckDuckGo home page is displayed')
def step_impl(context):
  context.browser.get(DUCKDUCKGO_HOME)

@when('the user searches for "{phrase}"')
def step_impl(context, phrase):
  search_input = context.browser.find_element_by_name('q')
  search_input.send_keys(phrase + Keys.RETURN)

@then('results are shown for "{phrase}"')
def step_impl(context, phrase):
  links_div = context.browser.find_element_by_id('links')
  assert len(links_div.find_elements_by_xpath('//div')) > 0
  search_input = context.browser.find_element_by_name('q')
  assert search_input.get_attribute('value') == phrase

The “environment.py” file can specify hooks to execute additional logic before and after steps, scenarios, features, and even the whole test suite. Hooks should handle automation concerns that should not be exposed through Gherkin. For example, Selenium WebDriver setup and cleanup should be handled by hooks instead of step definitions because after hooks always get run despite failures, while steps after an abortive failure will not get run.

from selenium import webdriver

def before_scenario(context, scenario):
  if 'web' in context.tags:
    context.browser = webdriver.Firefox()
    context.browser.implicitly_wait(10)

def after_scenario(context, scenario):
  if 'web' in context.tags:
    context.browser.quit()

Test Launch

behave boasts a powerful command line with many options. Below are common use case examples when running tests from the project root directory:

# Run all scenarios in the project
behave

# Run all scenarios in a specific feature file
behave features/web.feature

# Filter tests by tag
behave --tags-help
behave --tags @duckduckgo
behave --tags ~@unit
behave --tags @basket --tags @add,@remove

# Write a JUnit report (useful for Jenkins and other CI tools)
behave --junit

# Don't print skipped scenarios
behave -k

Pros and Cons

Like all BDD test frameworks, behave is opinionated. It works best for black box testing due to its behavior focus. Web testing would be a great use case because user interactions can easily be described using plain language. Reusable steps also foster a snowball effect for automation development. However, behave would not be good for unit testing or low-level integration testing – the verbosity would become more of a hindrance than a helper.

My recommendation is to use behave for black box testing if the team has bought into BDD. I would also strongly consider pytest-bdd as an alternative BDD framework because it leverages all the goodness of pytest.

5 Things I Love About SpecFlow

SpecFlow, a.k.a. “Cucumber for .NET,” is a leading BDD test automation framework for .NET. Created by Gáspár Nagy and maintained as a free, open source project on GitHub by TechTalk, SpecFlow presently has almost 3 million total NuGet downloads. I’ve used it myself at a few companies, and, I must say as an automationeer, it’s awesome! SpecFlow shares a lot in common with other Cucumber frameworks like Cucumber-JVM, but it is not a knockoff – it excels in many ways. Below are five features I love about SpecFlow.

#1: Declarative Specification by Example

SpecFlow is a behavior-driven test framework. Test cases are written as Given-When-Then scenarios in Gherkin “.feature” files. For example, imagine testing a cucumber basket:

Feature: Cucumber Basket
  As a gardener,
  I want to carry many cucumbers in a basket,
  So that I don’t drop them all.
  
  @cucumber-basket
  Scenario: Fill an empty basket with cucumbers
    Given the basket is empty
    When "10" cucumbers are added to the basket
    Then the basket is full

Notice a few things:

  • It is declarative in that steps indicate what should be done at a high level.
  • It is concise in that a full test case is only a few lines long.
  • It is meaningful in that the coverage and purpose of the test are intuitively obvious.
  • It is focused in that the scenario covers only one main behavior.

Gherkin makes it easy to specify behaviors by example. That way, everybody can understand what is happening. C# code will implement each step in lower layers. Even if your team doesn’t do the full-blown BDD process, using a BDD framework like SpecFlow is still great for test automation. Test code naturally abstracts into separate layers, and steps are reusable, too!

#2: Context is King

Safely sharing data (e.g., “context”) between steps is a big challenge in BDD test frameworks. Using static variables is a simple yet terrible solution – any class can access them, but they create collisions for parallel test runs. SpecFlow provides much better patterns for sharing context.

Context injection is SpecFlow’s simple yet powerful mechanism for inversion of control (using BoDi). Any POCOs can be injected into any step definition class, either using default values or using a specific initialization, by declaring the POCO as a step def constructor argument. Those instances will also be shared instances, meaning steps across different classes can share the same objects! For example, steps for Web tests will all need a reference to the scenario’s one WebDriver instance. The context-injected objects are also created fresh for each scenario to protect test case independence.

Another powerful context mechanism is ScenarioContext. Every scenario has a unique context: title, tags, feature, and errors. Arbitrary objects can also be stored in the context object like a Dictionary, which is a simple way to pass data between steps without constructor-level context injection. Step definition classes can access the current scenario context using the static ScenarioContext.Current variable, but a better, thread-safe pattern is to make all step def classes extend the Steps class and simply reference the ScenarioContext instance variable.

#3: Hooks for Any Occasion

Hooks are special methods that insert extra logic at critical points of execution. For example, WebDriver cleanup should happen after a Web test scenario completes, no matter the result. If the cleanup routine were put into a Then step, then it would not be executed if the scenario had a failure in a When step. Hooks are reminiscent of Aspect-Oriented Programming.

Most BDD frameworks have some sort of hooks, but SpecFlow stands out for its hook richness. Hooks can be applied before and after steps, scenario blocks, scenarios, features, and even around the whole test run. (Cucumber-JVM, by contrast, does not support global hooks.) Hooks can be selectively applied using tags, and they can be assigned an order if a project has multiple hooks of the same type. Hook methods will also be picked up from any step definition class. SpecFlow hooks are just awesome!

#4: Thorough Outline Templating

Scenario Outlines are a standard part of Gherkin syntax. They’re very useful for templating scenarios with multiple input combinations. Consider the cucumber basket again:

Feature: Cucumber Basket
  
  Scenario Outline: Add cucumbers to the basket
    Given the basket has "<initial>" cucumbers
    When "<some>" cucumbers are added to the basket
    Then the basket has "<total>" cucumbers

    Examples: Counts
      | initial | some | total |
      | 1       | 2    | 3     |
      | 5       | 3    | 8     |

All BDD frameworks can parametrize step inputs (shown in double quotes). However, SpecFlow can also parametrize the non-input parts of a step!

Feature: Cucumber Basket
  
  Scenario Outline: Use the cucumber basket
    Given the basket has "<initial>" cucumbers
    When "<some>" cucumbers are <handled-with> the basket
    Then the basket has "<total>" cucumbers

    Examples: Counts
      | initial | some | handled-with | total |
      | 1       | 2    | added to     | 3     |
      | 5       | 3    | removed from | 2     |

The step definitions for the add and remove steps are separate. The step text for the action is parametrized, even though it is not a step input:

[When(@"""(\d+)"" cucumbers are added to the basket")]
public void WhenCucumbersAreAddedToTheBasket(int count) { /* */ }

[When(@"""(\d+)"" cucumbers are removed from the basket")]
public void WhenCucumbersAreRemovedFromTheBasket(int count) { /* */ }

That’s cool!

#5: Test Thread Affinity

SpecFlow can use any unit test runner (like MsTest, NUnit, and xUnit.net), but TechTalk provides the official SpecFlow+ Runner for a licensed fee. I’m not associated with TechTalk in any way, but the SpecFlow+ Runner is worth the cost for enterprise-level projects. It has a friendly command line, a profile file to customize execution, parallel execution, and nice integrations.

The major differentiator, in my opinion, is its test thread affinity feature. When running tests in parallel, the major challenge is avoiding collisions. Test thread affinity is a simple yet powerful way to control which tests run on which threads. For example, consider testing a website with user accounts. No two tests should use the same user at the same time, for fear of collision. Scenarios can be tagged for different users, and each thread can have the affinity to run scenarios for a unique user. Some sort of parallel isolation management like test thread affinity is absolutely necessary for test automation at scale. Given that the SpecFlow+ Runner can handle up to 64 threads (according to TechTalk), massive scale-up is possible.

But Wait, There’s More!

SpecFlow is an all-around great test automation framework, whether or not your team is doing full BDD. Feel free to add comments below about other features you love (or *gasp* hate) about SpecFlow!

 

BDD Example Mapping

The two major goals of Behavior-Driven Development are better collaboration and automation. Even when the Three Amigos actually get together, collaboration can be tough. Where do we start? What scenarios should we write? What examples should be included?

Well, the Cucumber folks have a practice called “Example Mapping” to make it easier. All you need is a pack of index cards and a big table!

  1. Write the story under discussion on a yellow at the top of the table.
  2. Write a rule for each known acceptance criteria on a blue card under the story.
  3. Write each example for a rule on a green card.
  4. Write each open question on a red card on the side to discuss later.

Keep writing cards until the team is satisfied with the story. This process provides clear, fast feedback for stories. It should take about 25 minutes per story. A team can quickly see if a story is too big or needs further refinement. Engineers can easily turn example cards into Gherkin scenarios. Remember to assign questions to owners to get answers.

Rather than duplicate documentation here, please read Matt Wynne’s seminal post on the practice, Introducing Example Mapping.

Also, watch this webinar recording from Cucumber about Example Mapping: